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ABSTRACT 

Human error has been identified in an estimated 80% of all commercial and 

military maritime accidents.  Crew sizes on commercial merchant ships are 

characteristically smaller than military vessels.  Commercial merchant ships rely 

on automated technology in order to reduce crew sizes.  Since next generation 

naval ship designs are leveraging automated technology in order to reduce 

manning, an examination of commercial ship accidents is warranted.  Two 

independent raters coded 518 findings from 48 maritime mishap reports using the 

Department of Defense Human Factors Analysis and Classification System 

(HFACS) taxonomy.  Inter-rater reliability was calculated using Cohen’s Kappa 

and a final result of 0.72 was determined for HFACS Level I.  HFACS analysis 

identified relationships among the HFACS levels and collision, allision, and 

grounding accidents.  Logistic regression analysis identified six patterns 

stemming from latent conditions and active failures. This was used to develop a 

modified hazard analysis to identify how latent conditions aligned in the accident 

event chain, and to propose intervention measures.  The research concluded that 

a maritime version of HFACS should be adopted to improve the reliability of 

classifying causal factors.  Additionally, by employing human factors post-

accident research the Navy may be able to develop possible intervention 

strategies for the fleet. 
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EXECUTIVE SUMMARY 

 An estimated 80% of all commercial and military maritime accidents are 

attributed to human error.  Commercial merchant ships typically function with 

smaller crews than surface warships, relying less on manpower and more on 

automation.  Given the movement toward reducing personnel and leveraging 

technology in the next generation of naval vessels, an examination of commercial 

ship accidents and their causes is warranted.  Published maritime mishap reports 

involving collisions, allisions, and groundings from Canada’s Transportation 

Safety Board, the United Kingdom’s Marine Accident Investigation Branch, and 

the United States’ National Transportation Safety Board, between 2006 and 

2011, were studied. 

Two independent raters coded 518 findings from 48 maritime mishap 

reports using the Department of Defense Human Factors Analysis and 

Classification System (HFACS) taxonomy.  Inter-rater reliability was calculated 

using Cohen’s Kappa to determine agreement between raters.  Initially, a low 

Cohen’s Kappa of 0.45 was obtained for Level I and 0.39 for Level II, but after 

some discussion among raters, a consensus was reached for 405 of the 518 

findings for Level I and 357 findings for Level II.  Cohen’s Kappa was 

recalculated to establish a final score of 0.72 for Level I and 0.64 for Level II; 

both levels were classified as having “good” agreement.  The two raters were 

unable to reach consensus on 113 findings in Level I, most often attributing their 

differences to ambiguous nanocode definitions. 

Using logistic regression, the results were analyzed for patterns to 

determine relationships between the different levels of HFACS and collisions, 

allisions, and groundings.  The first round of logistic regression analysis 

consisted of determining if there was a significant difference in the HFACS  

Level I categories among the three types of accidents.  If an HFACS category 

was found to be significant, further analysis was conducted on the related 

subcategories.  The second round of logistic regression analysis performed was 
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to determine if there was a significant difference in the HFACS Level II 

subcategories among the three types of accidents. 

In the first round of logistic regression analysis, it was determined that the 

HFACS Level I category of Supervision was significant (p = 0.05) in predicting 

collisions versus non-collisions.  Subsequent analysis of Supervision 

subcategories revealed no significant factors.  The second round of logistic 

regression analysis revealed that the model was unstable, and therefore 

disregarded. 

During the first round of logistic regression conducted for allisions  versus 

non-allisions against HFACS Level I categories revealed that the Organization 

category was significant (p = 0.02).  Further analysis on Organization 

subcategories revealed that the Resource/Acquisition Management subcategory 

was significant (p = 0.03).  The second round of logistic regression analysis 

conducted for allisions revealed that two Organization subcategories, Violations 

(p = 0.04) and Organizational Processes (p = 0.08), were significant or near 

significant. 

The first round of logistic regression analysis conducted for groundings 

versus non-groundings against HFACS Level I categories revealed that the 

Supervision category was significant (p = 0.02).  Analysis on Supervision 

subcategories revealed that the Inadequate Supervision subcategory was slightly 

above significance (p = 0.06); therefore, it was singled out for further analysis.  

Subsequent analysis on the Inadequate Supervision subcategory only revealed it 

was significant (p = 0.4).  The second round of logistic regression analysis 

conducted for groundings revealed three subcategories were significant.  The 

Judgment and Decision-Making Errors (p = 0.01) and Inadequate Supervision  

(p = 0.01) subcategories were both considered significant.  The subcategory of 

Skill-Based Errors was near significant (p = 0.06). 

The predominant latent conditions leading to active failures were identified 

as patterns and then assessed in terms of effects, risk, and corrective measures 

in a modified hazard analysis.  Patterns derived from significant active failures 
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were evaluated for predominant latent conditions prevalent in the accident 

reports.  Collision accidents were identified with one significant pattern derived 

from the latent condition of unsafe supervision.  Allision accidents were identified 

with three significant patterns stemming from the latent conditions of the HFACS 

subcategories of Resource Management, Inadequate Supervisory Conditions, 

and Organizational Processes. Grounding accidents were identified with two 

significant patterns derived from active failures of Skill-Based, and Judgment and 

Decision-Making Errors. For Skill-Based Errors, two latent conditions in the 

HFACS Level II subcategories of Inadequate Supervision and Organizational 

Climate appeared to be significant.  Judgment and Decision-Making Errors were 

frequently associated with the latent conditions in HFACS Level II subcategories 

of Inadequate Supervision, Organizational Processes, and Organizational 

Climate.  Mitigating actions and interventions currently used by the Navy were 

recommended for all patterns with associated latent conditions.  When corrective 

measures were applied, likelihood values were decreased by one level, thereby 

reducing the overall Risk Assessment Value.  

The research concluded that the HFACS taxonomy is useful for analyzing 

maritime mishaps, but that the lack of nanocodes for the surface community 

made coding difficult for raters.  A maritime version of HFACS should be adopted 

to improve the reliability of classifying causal factors.  It is also necessary that 

raters conducting analysis be provided concentrated HFACS training prior to 

coding findings to improve inter-rater reliability.  Additionally, the Navy should 

consider further human factors research, using mishap and near-mishap data, to 

develop intervention strategies that could potentially reduce surface mishap rates 

in the future. 
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I. INTRODUCTION 

A. OVERVIEW 

There has been an ongoing battle in the Navy’s surface community to 

reduce the number of mishaps every year.  Today’s Navy is constrained by the 

threat of declining budgets, manning reductions, and sustained operational 

tempo.  Consequently, this can make the way the Navy conducts business 

unaffordable (O’Rouke, 2011).  In December 2011, Admiral Greenert, Chief of 

Naval Operations (CNO), wrote in a Proceedings article that “Our future fleet will 

remain ready, with the maintenance, weapons, personnel, and training it needs, 

although it may be smaller than today as a result of fiscal constraints” (Greenert, 

2011, para. 2). 

It is critical to preserve military resources and avoid warfighter capability 

gaps, which could aggravate the safety in the Fleet.  Resources are needed to 

not only provide the military with the technology necessary to fight a war, but also 

with the training to use the technology.  Modern weapons are complex to use; 

therefore, military personnel must train regularly to understand the capabilities, 

limitations, and operations of the platform or system (Atlantic Fleet Training and 

Testing, 2010).  On May 30, 2007, Secretary of Defense (SECDEF) Robert 

Gates set a goal for the Department of Defense (DoD) to achieve a 75% accident 

reduction by 2008 (Gates, 2007).  Mishaps directly cost the DoD approximately 

$3 billion per year, with indirect costs exceeding four times that amount.  This 

accident reduction goal has not been attained has since been reinforced by the 

current SECDEF and reinforced by the Secretary of the Navy through the 

Department of the Navy’s Safety Vision for 2012 (Maybus, 2009). 

According to the Research of Innovative Technology Administration 

Bureau of Transportation Statistics, over 76% of maritime mishaps stem from 

human factors (Surface Warfare School, 2007).  Recognizing the underlying role 

of human factors in mishaps is critical in distinctly categorizing mishaps.  While 

most mishaps should be avoidable, each year proves that mishaps are 
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inevitable.  From 2000 to 2009, the Navy surface community had a Class-A 

mishap (accidents involving death or costs exceeding $2 million) 10-year 

average of 5.9 mishaps per year with no common trend identified (Commander, 

Naval Surface Forces, 2010). 

In the past 10 years, the average hours that a ship is underway has 

increased by over 30% (Naval Sea Systems Command [NAVSEA], 2011).  This 

operational tempo suggests a need to increase ship life cycles in the Fleet, as 

well as crew deployment lengths (O’Rouke, 2011).  Since over 76% of reported 

maritime accidents are attributed to human error, an increase in operational 

tempo adds to the notion that more human errors can occur, which may lead to 

an increase in accidents.  Recently, during a speech at the Surface Navy 

Association’s annual conference, the Vice CNO, Admiral Mark Ferguson, 

conveyed that the Navy’s goal of 313 ships may need to be reassessed, 

particularly since the earlier goal was based on the maritime defense needs in 

2006 (Munoz, 2012).  Furthermore, Admiral Greenert, CNO, testified before the 

Congress that the current Fleet size will be reduced in 2012 and will not return to 

today’s current levels until 2017.  He added that the 2013 budget submission has 

the Fleet reaching active ship levels of about 300 ships (Greenert, 2012). 

The reduction in the defense budget confirms the need to reduce the 

amount of manpower in the Fleet.  Of the Navy’s Fiscal Year (FY) 2012 $161.4 

billion budget, Military and Personnel (MILPERS) accounted for $46.6 billion, or 

28.9% of the total budget (Assistant Secretary of the Navy, Financial 

Management and Comptroller, 2011). Consequently, MILPERS is predictably 

one of the first targeted areas to trim.  The Navy’s ability to operate a Fleet that is 

motivated and relevant means the workforce needs to have career-long tactical 

and strategic training (Greenert, 2011). 

After providing an address on April 3, 2012 at the Naval Postgraduate 

School (NPS) in Monterey, California, Commander Kirk S. Lippold, the USS Cole 

(DDG 67) Commanding Officer (CO) when it suffered a terrorist attack in 2000, 

responded to an audience question regarding the Navy’s optimal manning 
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program.  He stated:  “How good is automation if you don’t have power . . . if I 

had to deal with the 70% manning instead of the 94% manning that we had that 

day . . . I don’t know if we could have done it!”  The costs associated with a 

casualty due to a mishap, just like combat, means that the ship is out of the fight 

and resources such as manpower are being utilized to save the ship.  CDR 

Lippold further stated that, “reducing the size of crews and the size of the fleet is 

the reality and may put ships and crews at jeopardy” (Lippold, 2012). 

B. BACKGROUND 

In the book, Minding the Helm, the National Research Council (NRC) 

observed that the traditional shipboard structure for command, control, 

communications, and information induces the potential for human error (National 

Research Council [NRC], 1994).  Whether it is Navy ships or commercial 

vessels, human-systems interactions are constantly subjected to the human error 

chain.  At first glance, there are some obvious differences between commercial 

vessels and U.S. Navy warships.  Apparent visual differences are size, color, 

displacement, and draft, but a more in-depth look reveals similarities in the 

organizational culture and structure. 

Navigation risk hazards are commonly mitigated by the use of automated 

technology such as Electronic Chart Display and Information System (ECDIS), 

Automatic Radar Plotting Aid (ARPA), or the commercial off-the-shelf system 

named FURUNO.  The reliance on “dead-man” alarms (predetermined alerts on 

systems notifying operators of possible problems) may potentially reduce the 

overall big picture awareness for the Officer of the Deck (OOD), since the system 

is expected to alert them to any potential problems with navigation or shipping.  

Since it is necessary for OODs to roam around the bridge to receive various 

inputs from different systems and people, the availability of “dead man” alarms 

may provide a false sense of security.  The OOD may become complacent in his 

or her duty of maintaining awareness of the “big picture,” thereby reducing the 

effectiveness of his or her watchstanding performance (NRC, 1994). 
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All ships are comprised of numerous systems of systems, which must be 

integrated in order for the ship to properly function.  Integrated systems are 

expected to reduce both accident risk and work load, thereby reducing crew 

numbers and costs (NRC, 1994).  The crew is also integrated into the ship and 

must be managed as a highly valued resource (NRC, 1994).  Commercial 

vessels (and warships) typically utilize a traditional organizational hierarchy for 

Command, Control, Communications, and Information (C3I) to conduct 

operational duties (NRC, 1994).  From the military aspect, this hierarchical 

structure is necessary to communicate orders from officers to the crew, which 

typically means top-down communications.  This practice, however, inhibits the 

potential for bottom-up communication, which may be necessary to propagate 

vital information. 

Both Navy ship Commanding Officers (COs) and commercial vessel 

Masters (Captains) are subjected to time-speed-distance problems to ensure that 

their ships are in the right place, at the right time, while considering mission 

requirements.  OODs or Officers of the Watch can easily be inundated with 

information communicated from numerous sources.  It is their job to sift through 

the information, determine the best course of action, and make decisions in a 

dynamic bridge environment.  The possibility for active failures or latent 

conditions to occur on a bridge (whether Navy or commercial) is great, 

considering the amount of information that flows between watch-stations. 

Another critical factor in effective performance is trust, in terms of the 

system and operator performance (NRC, 1994).  In order to have safe and 

reliable operations, there is a need for operators to have a deep intuitive 

knowledge based on training and experience, as well as trust while leveraging 

technologically advanced systems (NRC, 1994).  The combination of 

technological, environmental, and organizational factors influence the way people 

perform (Rothblum et al., 2002).  Automated technology is often designed without 

due regard to how the human operator needs to interact with the system, thereby 

impacting overall performance (Rothblum et al., 2002).  Critical information may 
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either not be displayed, or displayed in a way where the information is 

misinterpreted by the human (Rothblum et al., 2002). 

The traditional organizational structure for C3I onboard ships can induce 

instead of reduce human error (NRC, 1994).  With a traditional crew it may be 

apparent that more communication is needed in order to spread information or 

orders.  Minimal crew size reduces the need for excessive communication, but, in 

turn, it may increase the training needed to operate systems and the workload for 

each watch-stander (NRC, 1994).  The U.S. crew size on modern commercial 

vessels has decreased from a range of 30 to 40, to crews of approximately 20 to 

30 per ship (NRC, 1994).  Until recently, the Navy tried to use an Optimal 

Manning Project (OMP) to reduce the size of crews on certain platforms of ships 

in the Fleet to save money.  OMP was intended not only as a cost-cutting 

measure, but also as a way to make the ships more efficient.  In January 2011, 

CNO Admiral Greenert rescinded this notion due to the downward trend in 

mission readiness and the additional workload and training placed on crews 

(Schonberg, 2012).  Today, instead of cutting a percentage of the crew, new 

designs for Navy ships are being built for an OMP-sized crew.  This, however, 

necessitates the need for a higher reliance on automation and technology, along 

with resource management training for the crew. 

Two U.S. Navy surface mishaps are cited extensively as case studies at 

the Surface Warfare Officer School in Newport, Rhode Island (Surface Warfare 

Officer School, 2007):  The Landing Ship Tank (LST), USS La Moure County 

(LST 1194) and the Guided Missile Cruiser (CG), USS Port Royal (CG 73).  Both 

ships had hard groundings and both mishaps involved human error, including 

failed resource management by leaders as well as an over-reliance on the use of 

readily available technology (Cole, 2009; McPherson, 2001).  These two cases 

are clear examples of mishaps involving human error. 

Many can recall images of the USS Port Royal, which ran aground on a 

coral reef just off the island of Oahu.  The ship was conducting sea trials after an 

extensive yard period in Pearl Harbor (Kakesako, 2011).  The grounding 
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provided a clear example of how human factors issues can develop into a chain 

of errors resulting in an accident.  The findings from the Navy Safety 

Investigation Board revealed that the CO was deficient on sleep; the ship’s 

navigation system was mismanaged; some ship equipment was inoperable or 

faulty; and the bridge team was inexperienced (Cole, 2009).  The cost to repair 

the coral reef and settle with the state of Hawaii was $8.5 million and the 

completed repairs to USS Port Royal were $40 million (Kakesako, 2011). 

The USS La Moure County ran aground while conducting an amphibious 

assault exercise off the coast of Chile (McPherson, 2001).  Improper use and 

reliance on Global Positioning System (GPS) technology, poor Bridge Resource 

Management (BRM), and failure to take into account the Combat Information 

Center’s recommendations were just some of the links in the human error chain 

(McPherson, 2001).  Since the cost to repair the ship was too great, it was struck 

from the Fleet, and on July 10 2001, it was towed into deep water and sunk as 

part of an annual United States-South American allied exercise named United 

International Antisubmarine Warfare (UNITAS) (NAVSOURCE.org, 2012). 

 Currently, the Bureau of Transportation Statistics estimates that 76% of 

civilian maritime mishap cases involve some form of human error (Surface 

Warfare Officer School, 2001).  This is denoted in one classic incident involving 

the oil tanker Exxon Valdez and another, more recent, incident involving the 

cruise ship Costa Concordia.  Both ship accidents were heavily publicized by the 

international news media and scrutinized for obvious human errors (Alaska Oil 

Spill Commission, 1990; British Broadcasting Corporation [BBC], 2012). 

The grounding of the Exxon Valdez in 1989 provided insight into the 

devastating consequences of human error and the impact of having a reduced 

crew.  The catastrophic accident turned into the worst environmental disaster at 

that time since Three Mile Island (Alaska Oil Spill Commission, 1990).  

Approximately 10.5 million gallons of crude oil spilled into Prince William Sound, 

which resulted in Exxon paying over $2 billion dollars to clean up the spill (Alaska 

Oil Spill Commission, 1990; Whitney, 1990).  Excessive workload, crew fatigue, 
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relaxed marine pilot standards, failure to properly maneuver the vessel, and 

failure to utilize technology in place on the bridge to recognize navigational 

hazards, all developed into a human error chain resulting in a commercial tanker 

accident (Whitney, 1990).  The Exxon Valdez disaster was preventable not only 

by minimizing human error, but by adding more stringent safeguards, to including 

manning (Alaska Oil Spill Commission, 1990). 

The BBC reported that the causes of the grounding and partial sinking of 

the Costa Concordia off the shores of Italy point to human error (BBC, 2012).  

Initial statements from the passengers and crew point to the Captain’s inactions 

as being the cause.  For some undetermined reason, the crew permitted the ship 

to go off its intended course and navigate through shoal waters (BBC, 2012).  

While the final investigation report has not been released yet, a statement by 

Costa Cruise Line boss Pier Luigi Foschi may foretell the outcome.  He stated 

that “we need to acknowledge the facts and we cannot deny human error” (BBC, 

2012, para. 10). 

 It is apparent by looking at these two civilian cases that human error 

patterns are prevalent just as with the mishaps seen involving U.S. Navy ships.  

The key point is that many of these ships, whether they be a cargo ship, tanker 

ship, or cruise ship, have minimal crew operating on the bridge and are exploiting 

the use of advanced technology.  This is the current and highly visible trend in 

the new Navy ship designs being constructed today.  Therefore, minimal 

manning ship designs may actually exacerbate the types of human errors seen in 

recent Navy ship mishaps, and it may also lead into other human error patterns 

due to the increasing reliance of technology on Navy ships. 

C. OBJECTIVES 

The purpose of this study was to use accident reports to conduct a 

systematic examination of commercial maritime navigation accidents in an 

attempt to understand existing human error patterns that may be pertinent to the 

Navy’s surface Fleet.  The intent was to identify human error patterns using the 

Human Factors Analysis and Classification System (HFACS) taxonomy adopted 
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by the DoD.  Once any human error patterns are identified, associated hazards 

are assessed in terms of risk to prioritize intervention development.  The goal of 

this study was to provide recommendations for preventing human error in U.S. 

Navy ship operations, as the Navy moves toward leveraging technology to 

reduce ship crew size. 

D. PROBLEM STATEMENT 

Mishaps have been prevalent throughout the Fleet for a long period of 

time.  The annual number of U.S. Navy afloat mishaps has decreased over the 

past decade, but so has the number of ships (Naval Safety Center, 2012).  The 

number of ships in 2000 was 318, which has since been reduced to a current 

level of 285 in 2011 (Naval History & Heritage Command, 2011).  The fact 

remains that mishaps will continue to occur and, with the reduced Fleet, each 

loss due to a mishap will become that much more critical. 

An approach to isolating human error types that are relevant to the 

commercial shipping is to analyze maritime accidents and determine what 

occurred (Rothblum, 2002).  Many of the analyses conducted on commercial 

vessels have shown that up to 80% of marine casualties had some form of 

human error (NRC, 1994).  While these analyses have had some effect, 

particularly through awareness, it has not dramatically reduced the number of 

mishaps.  Given that available resources are stretched for the U.S. Navy, it now 

has to redouble our efforts to reduce mishaps.  This proposed study examined 

what types of human errors are occurring in current maritime accidents, to 

determine the root causal factors of maritime accidents and if patterns of human 

errors emerge. 

The potential benefits of looking at human errors on commercial ships 

may be significant.  This is especially true since there have been reductions to 

the defense budget.  Reducing the amount of manpower on ships by increasing 

the use of automation and technology, while operational tempo increases and 

defense funding decreases, provides sufficient justification to apply the lessons 

found in the commercial vessel arena that could be applied to the U.S. Navy.  
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Lessons learned from commercial vessel accidents should be incorporated in the 

U.S. Navy’s training and culture.  Additionally, commercial vessel designs, 

technologies, and operating structure should be considered as part of the 

Analysis of Alternatives for Navy ship acquisitions.  A hard look at the human 

factors aspect of why commercial vessels have accidents may be beneficial in 

reducing or preventing the Navy’s surface mishaps in the future. 

E. RESEARCH QUESTIONS 

 In order to identify human error patterns in commercial maritime accidents, 

this study systematically employs DoD HFACS to investigate publically available 

domestic and international accident data reports to address the following 

research questions. 

• Can prevalent human error types and/or patterns be discerned in 

commercial maritime accidents? 

• Is there a difference between prevalent human error types and/or 

patterns identified in groundings, collisions, and allisions? 

• Given the presence of prevalent human error types and/or patterns, 

can relative risk be associated with those factors? 

• What is the reliability of employing the HFACS taxonomy in 

classifying human error factors in commercial maritime accidents? 

F. SCOPE AND LIMITATIONS 

There is limited access to the Naval Safety Center’s afloat mishap data 

concerning human error data analysis.  This study is currently limited to 

commercial maritime accident reports that are available publicly via the web.  

This study is limited in our ability to gain access to Naval Safety Center afloat 

mishap data and, therefore, is restricted to reported domestic and international 

commercial marine accidents.  This study will not include any mishaps that 

involve suicide as a leading cause of the mishap.  Additionally, the extent of this 

research is primarily focused on merchant vessels. 
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G. HSI 

HSI is the technical process that integrates the disciplines of human 
factors engineering, manpower (number of people/workload on 
people), personnel (knowledge and skill requirements), training, 
habitability, personnel survivability, safety, and occupational health 
hazards concerns into the Systems Engineering of a material 
system to ensure safe, effective performance and maintainability. 
(Galdorisi & Truver, 2011, sect. 7)  

Several of the HSI domains are involved in some manner in any mishap 

involving human error.  Of these domains, this study will center its focus on 

Human Factors Engineering (HFE), and Manpower, Personnel, and Training 

(MPT). 

1. HFE 

HFE is primarily concerned with designing human-machine interfaces 

consistent with the physical, cognitive, and sensory abilities of the user 

population (Defense Acquisition University [DAU], 2009).  HFE is one of the HSI 

domains that focus on the trade-offs among safety and the “ilities” such as 

system reliability, operability, usability, and maintainability.  Regarding maritime 

accidents, HFE looks at many areas including lighting, visibility, noise, vibration, 

human fatigue, automated technology, command, control, communication, and 

human-machine environments (Calhoun, 2006).  Many ships’ automated bridge 

systems are often designed with the notion that they are “fail-safe,” meaning the 

actions or inactions of bridge watchstanders will be identified and either corrected 

by the system itself, or at the very least alert the human operator of the 

impending error.  The idea that any system is foolproof may be a misnomer and 

give the human operator a false sense of comfort.  Additionally on Navy ships, 

bridge watch teams often rely on watchstanders in Combat Information Center 

(CIC) to provide protection for any of their errors.  Humans, in many ways, are 

ingenious and will find ways to counter the “fail-safe” system whether done 

intentionally or unintentionally. 
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2. MPT 

 Manpower represents the number of personnel or positions required to 

perform a specific task (DAU, 2009).  Plans to reduce the overall force structure 

of the Navy suggest there will be fewer people and fewer ships.  Unfortunately, 

the mission requirements of the Navy have not diminished.  This has a direct 

impact on the Navy’s manpower, personnel, and training.  New ship designs are 

dramatically reducing the number of crew onboard, while aging ships have 

recently reduced crew size to save funding.  While the optimal manning 

experiment has since been retracted, some ships are now being 

decommissioned earlier than scheduled due to the pending $450 billion FY 2013 

defense budget cut (Cavas, 2012).  This new requirement increases the amount 

of tasking per ship, potentially overstressing crews. 

Personnel considers the human aptitudes; knowledge, skills, and abilities 

(KSAs); and experience levels needed to perform job tasks (DAU, 2009).  To 

minimize the effect of overtasking a specific sailor or crew, ships are being 

designed and built with more technological advances than ever before.  This 

means that greater emphasis should be placed on human-system interaction in 

order for crews to understand and operate these systems (Dobie, 2003).  The 

Navy recently reduced the number of qualified lookouts from two watchstanders 

to just one watchstander (U.S. Government Accountability Office [GAO], 2010).  

This was achieved by more effectively using the technology onboard ships and 

ensuring that personnel were properly qualified (GAO, 2010).  The reduction in 

manpower for watch stations meant personnel needs were lessened onboard the 

Navy’s cruisers and destroyers (GAO, 2010). 

Training consists of the processes, procedures, and techniques used to 

train and qualify personnel, both military and civilian personnel to operate and 

maintain a system proficiently (DAU, 2009).  There will be an increased training 

cost per sailor to optimize performance, and an extended training period to allow 

the sailors to complete the training pipeline.  Since the training time is 

significantly longer for sailors assigned to a Littoral Combat Ship (LCS), detailers 
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will open billets 18 to 24 months ahead of time rather than the six to nine months 

currently used (Commander, Naval Surface Force Public Affairs, 2006). 

 Trade-offs among manpower, personnel, and training influence the drivers 

of cost, performance, and schedule in new ship designs.  A study conducted at 

the Naval Postgraduate School (NPS) showed that there are direct correlations 

between both manning and system performance, and inverse correlation 

between manning and mishap rates (Lazzaretti, 2008).  These are significant 

relationships to consider, especially since ships are now being designed with 

smaller crew sizes, thus increasing the possibility of human error.  The revelation 

of latent errors may take years, while active errors may affect the ship on a larger 

scale since each individual has more responsibilities. 

3. Human Systems Integration Trade-Off Analysis 

As defined in Secretary of the Navy Instruction 5000.2E, “HSI is the 

integrated analysis, design, and assessment over the life-cycle of a system and 

associated support infrastructure MPT, HFE, survivability, habitability, safety, and 

occupational health” (Department of the Navy, 2011).  Trade-offs across the HSI 

domains are often difficult to quantify; therefore a qualitative description is 

currently used.  Nevertheless, the goal of HSI analysis is to ensure that the 

requirements related to the HSI domains are satisfied within the constraints of 

the system’s life-cycle cost, performance, and schedule (Holness, Shattuck, 

Winters, Pharmer, & White, 2011).  In addition to understanding trade-offs, it is 

essential for HSI trade-off analysis to understand the boundaries of the problem 

in order to determine the “trade space.”  The trade space is the set of program 

and system parameters, attributes, and characteristics required to satisfy 

performance standards (Brantley, McFadden, & Davis, 2002).  The term “trade 

space” has several connotations, but ultimately the trade space is dependent on 

the decision-maker’s choices in regards to cost, schedule, and performance.  

Thus, understanding the problem, determining the trade space, and quantifying  
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all possible trade-offs among the HSI domains will facilitate decision makers in 

the design and acquisition of a system, as well as operations involving the Navy 

fleet or the civilian sector. 

 Human factors issues such as sleep deprivation, the reliance on 

automated technology and extended working hours have persistently been noted 

in maritime accident reports.  Fatigue can affect the overall performance of an 

individual, along with his or her ability to be attentive and remain alert (Calhoun, 

2006).  During periods of fatigue, there is an increased likelihood of diminished 

problem-solving ability, delayed reaction time, and increased risk taking.  This 

typically results from sleep deprivation, poor sleep quality, stress, or 

physical/mental exertion (Calhoun, 2006).  Fatigue in the captain and the crew 

was one of the factors that caused the USS Port Royal to run aground (Oceania 

Regional Response Team, 2009). 

 Another human factors issue is the use of automated technology onboard 

ships.  Human errors are often the result of technologies that are incompatible 

with optimal human performance (Rothblum, 2002).  Today’s ship designs use a 

lot of technology in order to minimize manning levels (Calhoun, 2006).  This can 

be considered a method to reduce the life-cycle costs of a ship, since increased 

technology means less people and less money.  The reduction in crew sizes, 

however, does not come without some form of trade-off.  Since the use of 

automation means a smaller crew, the crew is more susceptible to fatigue, 

stress, and task overload, which results in an increased risk for them and the 

ship (Calhoun, 2006).  Additionally, trade-off considerations should be given to 

the likelihood of increased training requirements for operators and maintainers of 

a system.  In general, human factors issues are difficult to resolve and engineers 

are usually compromised by economic pressures (Calhoun, 2006).  The effects 

on other domains should be identified as early as possible and be quantifiable 

with regards to cost, performance, and schedule. 

Regarding the domains of MPT, manning is considered to be a fixed 

number allotted for each ship of the Fleet.  The current manning levels of ships 
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has been decreased in order to reduce ship costs.  Since 2001, the U.S. Navy 

has reduced manning levels to determine the optimal manning for a ship.  

Enlisted manning requirements throughout the Fleet were reduced by about 20% 

(GAO, 2010).  The result of this manning decision is an indirect trade-off not 

using HSI practices.  The standard workweek was increased from 67 to 70 hours, 

which can lead to crew fatigue and increase human errors (GAO, 2010; Naval 

History & Heritage Command, 2011).  The true standard workweek, however, is 

actually about 80 hours once training and other factors are considered.  The 

decrease in manning was offset by the increase in technology such as 

automated systems, and an increase in training and education for the sailors in 

order to utilize the automated systems.  Other trade-off considerations are the 

financial costs associated with increasing automation to facilitate the loss of 

manpower; the increase in defense funding required for the training and 

education of sailors who will operate these automated systems; and the funding 

required in order to preserve the retention of sailors who may find the increased 

workload unappealing (Holness et al., 2011). 

In order to reduce costs, minimizing the crew size onboard a warship to 

include the number of officers meant that a junior officer would be directly 

affected in terms of span and control and adequate manning to perform specific 

missions.  To save training costs in 2003, the surface warfare community cut 

funding for the initial surface warfare school held in Newport, Rhode Island.  All 

initial surface warfare training curricula were placed onto a compact disc (CD) 

“Surface Warfare Officer School (SWOS)-in-a-Box” and distributed to the ships in 

the Fleet for newly accessed officers to self-train (Shovlin, 2008).  The impetus of 

the training was placed not only on the newly commissioned officer, but also on 

the more experienced department heads on the ships whose schedules were 

already fully saturated.  Differences between the CD-based training and the 

traditional SWOS classroom environment were considered significant (Bowman, 

Crawford, & Mehay, 2008).  The workload placed on the unqualified junior officer 

and department heads was considered too high and many senior Naval officers 
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considered the training ineffective.  The reduction of manpower on ships meant 

that officers needed to be better-trained surface warfare professionals.  Instead, 

the trade-off was increased training costs due to the realization that newly 

implemented officers into the SWO community needed initial training.  New 

schoolhouses had to be opened at the Afloat Training Groups (ATGs) and 

SWOS had been reinstated (Naval Surface Forces Public Affairs, 2011).  It is 

plausible that the reduction in manpower, the deficiency of properly trained 

surface warfare junior officers, and the workload placed on junior officers and 

department heads placed ships in jeopardy, both in the present and in the future, 

as these insufficiently trained junior officers become department heads. 

BRM is also challenged as the reduction of manning and personnel is 

placed on ships.  During higher-risk evolutions such as entering or leaving port, 

crewmembers are asked to perform events beyond their normal scope of 

training.  Aboard U.S. Navy frigates, junior Yeomen become bearing takers and 

bearing recorders for the Navigation team on the bridge, a task traditionally 

saved for trained Quartermasters who are essentially navigation specialists for 

the ship.  A junior Yeoman may not understand the importance of reading off the 

three digits of a bearing to a physical navigation object (on land or in the water) 

through a sound-powered phone to the bearing recorder who, in turn, provides 

that information to the Navigation plotter.  The Navigation plotter quickly takes 

that historic information and triangulates a position, or “fix,” onto a chart to 

determine where the ship was located as the bearing recorder initiated the 

sequence of the fix.  This historical information is crucial to the upper levels of the 

operational chain of command on that ship, but the information chain may start 

with an inadequately trained junior Yeoman. 

Bridge watch teams are often left without properly trained Junior OOD 

(JOOD) or Conning Officers as the ship conducts a harbor transit.  The JOOD is, 

for all intents and purposes, the assistant to the OOD.  The OOD is required to 

maintain the entire situation or “big picture” of the ship and apply it to the mission 

at hand.  The immediate actions of the JOOD should reduce the workload of the 
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OOD, allowing him or her to maintain focus on the big picture; but, in the 

absence of a JOOD, at least an experienced one, the workload increases 

significantly.  Situations such as this are becoming the new norm on ships and 

places a new requirement on BRM for OODs as they are required to do more 

with either fewer or less-trained personnel. 

H. ORGANIZATION 

This thesis is organized into five chapters.  Chapter I presents an overview 

of human error involvement on recent accidents involving commercial vessels 

and attempts to apply this to both contemporary and classic Navy ship mishaps.  

Chapter II provides an understanding of human error and a description of the 

HFACS rating process.  Chapter III describes the methodology of the HFACS 

rating process used on civilian maritime accident reports and the process used in 

conducting data analysis.  Chapter IV presents the results of the HFACS rating 

process, HFACS categories that were found significant, and patterns identified, 

and a subsequent hazard analysis developed from the patterns.  Chapter V 

offers conclusions and recommendations based on the findings. 
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II. LITERATURE REVIEW 

A. OVERVIEW 

This chapter provides a general overview of recent human factors studies 

involving surface vessels, human error, accident causation, and HFACS.  The 

literature reviewed covered human factors issues, human error as causal factors 

(particularly involving safety and ship accidents), and renowned experts in the 

human error field.  The literature consisted of thesis research reports, books 

written by renowned human error authors, and research published by 

government agencies.  An in-depth review of the HFACS taxonomy was also 

conducted in order to gain a comprehensive understanding of the relation 

between Reason’s Swiss Cheese Model (SCM) and HFACS.  Furthermore, DoD 

HFACS materials were used for the purpose of this research. 

B. MARITIME ACCIDENTS 

A Massachusetts Institute of Technology (MIT) study examined causal 

factors contributing to ship groundings while transiting in and out of ports (Lin, 

1998).  It found that errors in tide forecasts did not have a significant effect as a 

risk factor for ship groundings while transiting in and out of port, but noted that 

nighttime transits were more hazardous than daytime transits (Lin, 1998).  The 

study argued for future risk analysis, vis-à-vis human factors, as the most 

significant contribution to ship groundings in order to build a risk model for 

groundings (Lin, 1998).  Complementary to this writing, the research at MIT 

found many papers indicating human error causal factors as the most significant 

reason for groundings, but very little human factors research has been conducted 

to support this notion (Lin, 1998).  This is due largely in part to the lack of 

available historical data.  This is not necessarily due to the inaccessibility of 

reports, but to the absence of an effort to record information from ship 

groundings (Lin, 1998). 
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A study conducted at NPS evaluated an earlier version of the HFACS 

taxonomy for applicability, reliability, and usefulness in a post hoc analysis of 

Naval Safety Center mishap data.  In the HFACS study, it was found that the 

application of HFACS was relevant to Navy afloat Class “A” mishaps (i.e., 

mishaps that have fatalities or a total cost equal to or greater than $1 million) 

(Lacy, 1998).  The HFACS taxonomy provided sufficient categories to classify 

mishap findings conducted in a post hoc data analysis of Naval Safety Center 

(NSC) surface accident reports.  Over 92% (459 of 496) of all causal factors were 

classified in HFACS.  While only one category was used per causal factor, it 

identified some causal factors that could be classified in more than one category 

(Lacy, 1998).  The research concluded that HFACS was useful for identifying 

causal factor classification and supported strategies to prevent future mishaps 

(Lacy, 1998).  The HFACS taxonomy has since been modified to classify all 

Department of Defense (DoD) operational and training mishaps (DoD, 2005). 

In the NPS study, two Naval officers were used as raters to classify each 

report’s findings into the HFACS taxonomy and Cohen’s Kappa was used to 

assess inter-rater reliability (Lacy, 1998).  After disagreements were resolved, 

from the data it was determined the HFACS taxonomy is useful for classifying 

human error causal factors for postaccident data analysis (Lacy, 1998).  It was 

further recognized that U.S. Navy mishap reports, as currently written, are not 

conducive for human factors analysis and it was suggested that HFACS causal 

factor descriptions should be included within the database to better support 

analysis for identifying frequency of human error causal factors and patterns 

(Lacy, 1998). 

An Human Factors Working Group (HFWG) report revealed that human 

error contributes to between 84% and 88% of tanker accidents; 79% of towing 

vessel groundings; 89% to 96% of collisions; 75% of allusions; and 75% of fires 

and explosions (Rothblum, 2002).  These percentages show the importance of 

identifying precisely what the human error is in order to determine the 

appropriate intervention strategy for preventing future mishaps.  Human factor 
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issues such as fatigue, communication, BRM, automation, situational awareness, 

teamwork, decision-making and health and stress, are all factors that influence 

safety onboard maritime vessels. 

A Journal of Safety Research article stated that, “Monitoring and modifying 

the human factors issues could contribute to maritime safety performance” 

(Hetherington, Flin, & Mearns, 2006, p. 401).  The review recognizes the same 

issue that Lin’s research at MIT identified.  That is, studies have been published 

regarding maritime safety, but no literature review has been conducted to 

“aggregate the causal factors within accidents in shipping and surmise current 

knowledge” (Hetherington et al., 2006, p. 401). 

Clearly, numerous studies have revealed human error as a major 

component of ship accidents.  There is an obvious safety element involved in the 

identification and classification of human error root causal factors in accidents.  

The International Maritime Organization (IMO) states, “Shipping is perhaps the 

most international of all the world’s great industries and one of the most 

dangerous” (Hetherington et al., 2006, p. 401).  This statement emphasizes the 

importance of determining what causal factors were involved in maritime mishaps 

in order to identify patterns in human factors analysis and eventually develop 

interventions to prevent further human error resulting in accidents. 

C. HUMAN ERROR 

Human error has been identified in numerous writings as the root cause in 

both commercial and military maritime mishaps.  The HFACS categorizations of 

human error have typically been completed through hindsight investigations, 

where the outcome of the mishap is known and the human is often attributed the 

blame (Salmon, Regan, & Johnston, 2005).  Rasmussen considered the system 

itself in determining human error.  If the system performs less satisfactorily 

because of a human act, then it is very likely human error (Rasmussen, 1986). 

He further defined errors as simply a difference between an actual state and a 

desired state (Rasmussen, 2003).  Woods (2006) describes the labeling of 

“human error” as prejudicial.  Utilizing the term “human error” hides much more 
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than it reveals about how a system functions or malfunctions (Woods, Dekker, 

Cook, Johannesen, & Sarter, 2010).  Another characterization of human error is 

the inappropriate human behavior that lowers levels of system effectiveness or 

safety, which may or may not result in an accident or injury (Wickens, Lee, Liu, & 

Gordon Becker, 2004). 

This paper utilized Reason’s definition of an error, which defines error as a 

symptom that reveals the presence of latent conditions in the system at large 

(Reason, 1997).  Reason acknowledges that there is an overabundance of 

human error definitions without a universal definition of human error (Reason, 

1990).  Furthermore, there is no universal taxonomy to classify human error, for 

typically human error taxonomies are designed for a specific purpose, where no 

scheme is likely to satisfy all needs (Reason, 1990). 

The term “error” is often used in a vague sense to easily describe actions 

or inactions that may have occurred in everyday events.  In order to enable a 

more detailed examination, Reason further split errors into two main categories:  

errors and violations.  Violations differ from errors because they are considered 

intentional acts, violations break known rules or procedures, whereas errors do 

not (Reason, 1990). 

Violations are the intentional deliberate action(s) of a human operator 

(Reason, 1997).  The person who committed the act made a conscious decision 

to deviate from the plan by his or her actions, thus breaking a specific rule or 

procedure, or defying the norms conveyed throughout the organization (Reason, 

1997).  Violations are often categorized into one of three areas:  routine, 

optimizing, or exceptional.  Routine violations are tolerated by the organization 

and tend to become habitual by nature (Shappell & Wiegmann, 2000).  

Optimizing violations occur when an individual seeks to elevate the importance of 

some goal other than safety (Maurino et al., 1995).  Exceptional violations are 

actions that are considered an extreme departure from what is considered 

acceptable by either the organization or the operator.  Reason describes this as 

a one-off breach of regulations dictated by unusual circumstances (Maurino, et 
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al., 1995).  While there are various categories of violations, and previous 

versions of HFACS had two subcategories of violations (routine and exceptional), 

this paper will align with the current DoD HFACS categories and not break 

violations down into any further subcategories. 

In order to gain a better understanding of errors, Reason further 

categorized errors into three basic types (see Figure 1).  He describes errors as 

skill-based slips and lapses, or rule-based and knowledge-based mistakes 

(Reason, 1990).  Slips and lapses are better understood as failures in execution, 

while mistakes are considered failures in planning.  Slips and lapses occur when 

there is a good plan in place and are considered unintentional.  A slip is 

considered an incorrect action taken by a human operator (e.g., the wrong button 

was pressed).  Lapses are failures in memory (e.g., an operator forgot to press 

the button).  Mistakes occur when there is a failure to have a good plan in place, 

meaning a perfect execution of the plan would not have yielded the intended 

result.  Plans which are poorly written, inappropriate for a particular mission, or 

too risky are very likely to have an operator make a mistake. 

 
Figure 1. Slips, Lapses, and Mistakes (From Reason, 1994) 
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D. CAUSATION THEORIES 

1. Knowledge-, Rule-, and Skill-Based Behavior 

Reason’s three basic error types of skill-based slips and lapses, and rule-

based and knowledge-based mistakes can be correlated to Rasmussen’s three 

performance levels (Reason, 1990).  This is done by identifying the relationship 

between the three types of errors and the amount of cognitive processing or 

performance levels by the human in Rasmussen’s levels of performance.  The 

three levels of performance are knowledge-based, rule-based, and skill-based 

behaviors. 

Skill-based behaviors represent sensory-motor performance during acts or 

activities that, following a statement of an intention, take place without conscious 

control as smooth, automated, and highly integrated patterns of behavior 

(Rasmussen, 1983).  These can be common physical tasks, which require little 

cognitive thought.  Flipping a switch upon hearing an alarm or turning a dial when 

an indicator reaches a certain parameter are examples.  These actions have 

been conducted or practiced repeatedly and require virtually no monitoring—

meaning the task becomes almost automatic. 

Rule-based behaviors are like “if-then” statements (Airbus, 2005).  If the 

problem is A, then do procedure B.  This type of behavior is taught through 

formal training or by learning the job through the guidance of experienced 

workers, such as in an apprenticeship.  The amount of conscious decision-

making or cognitive thinking is higher than in rule-based behaviors, but less than 

in knowledge-based behaviors.  Therefore, it is considered an intermediary 

performance level. 

Reason’s (1990) Generic Error Modeling System (GEMS) relates the three 

levels of performance in a taxonomy that relied on Rasmussen’s three types of 

errors (see Figure 2).  Knowledge-based behaviors are goal-based for this 

control of performance is at a much higher conceptual level than skill or rule-

based behaviors.  The goal is explicitly formulated and a mental model, which 

incorporates the functional properties of the environment, and predicts of the 
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effects of the plan considered, is formed intuitively (Rasmussen, 1983).  This 

level of performance is conducted in a virtual manner because there are no rules 

or training that have been derived to handle these types of situations. 

 
Figure 2. Generic Error Modeling System (From Reason, 1990) 

2. Domino Theory 

The core of the Domino Theory, developed by Herbert W. Heinrich who 

studied industrial safety in the early 1900s, is that accidents are a result of a 
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sequence of events.  This is analogous to dominos falling over in a line; as one 

falls over onto the other, it will cause a continuous chain of events resulting in an 

accident.  Heinrich likened the dominos to unsafe conditions or unsafe acts, 

where their subsequent removal prevents a chain reaction from occurring, thus 

preventing an accident (Heinrich, 1941). 

There are five dominos, or stages, defined by Heinrich, representing a 

figurative causal factor in accidents (see Figure 3).  The first domino is Social 

Environment and Ancestry, which looks at how society or inheritance explains 

the personality of a worker.  These people exhibit personality traits such as 

stubbornness, greed, or recklessness, which may have been developed from the 

social environment of the worker or essentially inherited (Heinrich, 1941).  The 

second stage in the domino theory is the secondary personality traits that are 

gained by the worker due to their own personality.  These traits, such as a bad 

temper or ignorance, and gained from society or inheritance, are essentially 

embedded with other character flaws and become contributors to unsafe acts or 

unsafe conditions.  The third domino is the unsafe act or unsafe condition.  This 

is the central reason why accidents occur in the workplace; thus, the subsequent 

removal of the unsafe act or unsafe condition will prevent an accident.  The 

accident itself is the fourth domino.  According to Heinrich (1941) an accident is 

just one factor in a sequence that results in an injury.  The final domino is the 

injury to a person, which is a direct result of the accident.  The combination of the 

first three dominos causes accidents, while the removal of any one of the 

dominos is the easiest way to prevent an accident from occurring. 
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Figure 3. Heinrich Domino Theory (After Heinrich, 1941) 

3. Swiss Cheese Model (SCM) 

In 1990, Reason published his book, Human Error.  The accident 

causation model he developed became better known (though not intentionally) as 

the Swiss Cheese Model.  SCM simplifies a theory through a modest illustration 

of how a mishap or accident can occur in a system or organization.  It places 

emphasis on the structure or hierarchy of an organization, and with the 

collaboration of human error.  The model focuses on both organizational 

hierarchy and human error.  Reason suggests that a mishap can occur due to the 

culmination of more than one human error occurring at each level of the SCM 

(Reason, 1990).  The levels are essentially layers of defenses put in place to 

stop the chain of events, caused by human errors, leading to a mishap.  His 

theory suggests that the ideal layered defense would not have any holes, thereby 

preventing any possible hazard leading to an accident.  The reality of Reason’s 

SCM shows that the layered defenses in depth are actually muddled with holes, 

which suggests that a mishap is virtually unavoidable if the holes were to line up. 

This section offers an example of a sequence of events regarding failed 

defensive layers of U.S. Navy ship operation.  It is analogous to the descriptions 

offered by Shappell and Wiegmann (2000), which were originally intended to gain 
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insight about aviation defensive layers.  An example of defensive layers failing is 

a possible scenario where the outcome of a mishap is that a U.S. Navy warship 

collides with a tanker vessel during a refueling operation.  Prior to the mishap, 

fallible decisions by “Big Navy” or upper management may have resulted in aging 

ships being operated with less crew, but maintain the current operational tempo.  

The Captain may have been pressured to maintain mission readiness and to be 

in the right place, at the right time under unreasonable circumstances (Reason, 

1990).  The Officer of the Deck (OOD) may have been pressured to cope with a 

bridge team of less-trained personnel during a stressful refueling operation.  

Additionally, a less-than-ideal culture may have existed where little or no rest for 

the crew and officers was offered.  This type of precondition is common for the 

Surface Warfare community, where minimal sleep is sometimes considered a rite 

of passage.  The Conning Officer’s last conning order was misinterpreted by the 

Helmsman, which resulted in an unsafe act, where the Helmsman steered the 

warship towards the oiler instead of away.  The Helmsman, meanwhile, may 

have been distracted and was dealing with an unknown alarm on the ship’s 

control console just prior to the collision. It is all too common in Fleet operations 

and is shown purely to demonstrate the effect of the holes in defense lining up 

just right to allow a Class “A” maritime mishap to occur.  This introduced, or at 

least generally defined, a universal concept that mishaps are the culmination of 

errors that have passed through holes (or gaps in defenses) in the “cheese,” 

which are the layers of defenses designed to stop mishaps from occurring. 

4. Active Failures and Latent Conditions 

The holes in the SCM are derived from one of two notions that the holes 

are either due to active failures or some other latent conditions (see Figure 4).  

Active failures, also known as unsafe acts, are errors that are typically made by 

the main operator(s) of a system.  Ships’ crews or aircraft pilots are examples of 

main operator(s) of a system.  This is considered to be at the sharp end of the 

system and can have the most direct impact in allowing the mishap to occur.  

Since the actions of these operators can have an immediate impact on the 
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mishap, the acts committed by them are characterized as active failures 

(Reason, 1990).  Latent failures are considered the complement of active 

failures.  These failures are customarily at the blunt end of the system and 

mishaps from such failures may take years to come to fruition.  These mishaps 

were most likely not caused by the slips, lapses, or mistakes of the front-line 

operator.  Instead, the error may have been deep within the system, hidden 

inside the organization.  Years of neglected maintenance of a system is an 

example directly related to maritime vessels representing hidden, unsafe actions.  

These unsafe actions are considered to be consequential to the mishap, instead 

of being labeled as the direct causal factor (Reason, 1990). 

 
Figure 4. Reason’s Swiss Cheese Model (From Naval Safety Center, 2012) 

E. DOD HUMAN FACTORS ANALYSIS CLASSIFICATION SYSTEM  

In an effort to operationalize Reason’s Accident Causation theories and to 

be able to apply it, HFACS was developed.  HFACS was originally developed for 
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Naval aviation, but it has since been directed for the application of surface fleet 

mishaps (Shappell & Wiegmann, 2000).  HFACS has also been applied in the 

commercial sector as well as medical fields (HFACS, Inc., 2010). 

HFACS draws directly upon Reason’s SCM.  Shappell and Wiegman 

(2000) describe Reason’s SCM as an appealing approach to the genesis of 

human error.  The fallibility of his model, however, is that it is just a general 

conception of how mishaps can occur and does not give detailed ways to apply it 

in real mishaps.  The derivation of HFACS was a substantial attempt to classify 

human errors into a framework for studying aviation accidents.  Reason’s 

concept of active failures and latent conditions is the backbone of HFACS.  

Figure 5 shows the four levels of failure:  (1) Unsafe Acts, (2) Preconditions for 

Unsafe Acts, (3) Unsafe Supervision, and (4) Organizational Influences.  These 

are described in order to provide taxonomy to accident investigation (Shappell & 

Wiegmann, 2000).  The original HFACS taxonomy was developed based on 300 

Class A Naval Aviation flight mishaps, but it has been further cultivated into the 

DoD HFACS currently in use to investigate all operational mishaps. 
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Figure 5. HFACS Taxonomy (From DoD, 2005) 

1. Level I Acts 

Acts are those factors that are most closely tied to the mishap, and can be 

described as active failures or actions committed by the operator that result in 

human error or unsafe condition (DoD, 2005).  To assume that a mishap stems 

from a single point of failure is naïve (Woods, 2006).  Reason (1990) suggests 

that mishaps are associated with numerous unsafe acts, too many to actually 

measure.  The fact remains, however, that maritime mishaps and, maybe more 

importantly, near misses, are too often loaded with unsafe acts, which may be 

unintended (errors) or intended (violations) (Maurino et al., 1995). 
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The Acts level can be generalized into two categories, errors and 

violations, which are based on of the first level of defense in Reason’s SCM.  

Errors are described in HFACS as the mental or physical errors that represent 

the mental or physical activities of individuals that fail to achieve their intended 

outcome (DoD, 2005).  This is broken down for granularity into the subcategories 

of decision errors, judgment and decision-making errors, and misperception 

errors. 

Skill-based errors represent sensory-motor performance during acts or 

activities that, following a statement of intention, take place without conscious 

control as smooth, automated, and highly integrated patterns of behavior 

(Rasmussen, 1983).  This means actions are fundamentally accomplished 

without much conscious thought, but operators are then easily susceptible to 

forgetting steps or errors in techniques.  A common mantra heard throughout the 

military is to “train like we fight and fight like we train.”  Meaning procedures 

followed in training should be identical to that in actual operations to avoid 

developing inappropriate habit patterns that could show up in combat. This is 

similar to “errors in techniques,” since operators may have developed bad habits 

over time, which may lead to a failure later. 

Judgment and decision-making errors can be viewed as procedural errors, 

poor choices, or problem-solving errors.  Wiegman and Shappell described 

decision errors as “honest mistakes” or actions (or inactions) of individuals who 

had their “hearts in the right place” (Wiegman and Shappell, 2000, p.4)  

Misperception errors occur when an individual’s perception of a situation differs 

from reality.  Mariners often cite nighttime operations as being more difficult than 

daytime operations due to the loss of depth perception in the dark. 

Violations are defined as the willful disregard for the rules and regulations 

(Rothblum et al., 2002).  Violations are divided into two subcategories of routine 

and exceptional.  Typical violations are common noncompliance to rules set forth 

for safety.  DoD defines a violation as factors in a mishap when the actions of the 

operator represent willful disregard for rules and instructions, and lead to an 
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unsafe situation (DoD, 2005).  An example of a violation would be a ship 

transiting through a “no-wake zone” near a harbor, where there is a speed 

restriction of 10 knots.  Ships may routinely ring up a couple of extra knots on the 

engines in order to get to their destination faster.  Another violation may be a ship 

transiting at flank speed through the zone, with no regard for the safety of other 

vessels.  While one violation may seem less harmful than the other, both are 

considered willful disregard for the rules, and therefore a violation. 

2. Level II Preconditions for Unsafe Acts 

DoD describes preconditions as factors in a mishap if latent and/or active 

preconditions affect practices, conditions, or actions of individuals and result in 

human error or an unsafe situation (DoD, 2005).  Previous versions of HFACS 

included only two categories:  substandard practices of operators and 

substandard conditions of operators.  The DoD HFACS has three categories:  

environmental factors, condition of individuals, and personnel factors. 

Environmental factors are assigned into two subcategories of 

technological or physical environments.  The considerations of technological 

environment are issues such as the equipment and control designs; and human 

systems interface characteristics (displays), checklists, task factors and 

automation (Shappell et al., 2007).  The physical environment incorporates 

issues such as weather in an operational setting, or the ambient environment 

such as temperature, vibration, and lighting (Shappell et al., 2007). 

Much like the entire Preconditions level, the Condition of Individuals 

subcategory has gone through several iterations.  Previous versions included 

only the subcategories of adverse mental states, adverse physiological states, 

and physical mental limitations (Shappell et al., 2007).  The DoD HFACS has five 

separate subcategories:  cognitive factors, psycho-behavioral factors, adverse 

physiological states, physical/mental limitations, and perceptual factors (DoD, 

2005). 

Cognitive factors are conditions affecting the perception or performance of 

an individual, resulting in human error (DoD, 2005).  Inattention, confusion, and 
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task oversaturation are some examples of cognitive factors.  When an 

individual’s personality traits, psycho-social problems, psychological disorders, or 

the wrong motivation causes an unsafe situation or a mishap, it is considered to 

be a psycho-behavioral factor (DoD, 2005).  Examples of an adverse 

physiological state are factors such as fatigue, motion sickness, operating under 

the influence of prescription drugs, and preexisting illnesses or injuries.  

Physical/mental limitations are factors where the individual may not have the 

physical or mental capacity to handle a given situation, thereby causing a 

mishap.  The final subcategory of perceptual factors considers the individual’s 

misperception of surrounding operational conditions, visual illusions, or their 

disorientation in the operational environment. 

The third category of Preconditions is broken into two subcategories of 

Coordination/Communication/Planning Factors and Self-Imposed Stress.  

Coordination/Communication/Planning factors looks at the interactions between 

the individuals and teams who are involved in the preparation and execution of 

an operation that resulted in human error (DoD, 2005).  The subcategory of Self-

Imposed Stress is when an operator is involved in an accident or unsafe situation 

due to their disregard of their lack of mental or physical readiness to perform.  

Physical-fitness level, alcohol, drugs, and diet are some of the considerations for 

this subcategory. 

3. Level III Supervision 

The next level of HFACS deals with supervision.  This considers the role 

of inappropriate supervision to the extent that it causes an unsafe situation or a 

mishap.  It is divided into four categories of inadequate supervision, planned 

inappropriate operations, failure to correct known problem, and supervisory 

violations. 

A supervisor’s role should be to provide subordinates with opportunities to 

succeed by providing guidance, training opportunities, and leadership as well as 

motivation (Shappell & Wiegmann, 2000).  Navy officers typically receive BRM 

training, but this does not guarantee leadership performance.  There are still 



 33 

issues with personality conflicts, policy, and supervision on ships, which can 

develop into a latent error, causing an unsafe situation. 

In normal operations, a ship’s crew ordered to conduct a mission that it is 

not trained to handle, is an unacceptable risk (DoD, 2005).  High operational 

tempos and saturated schedules can jeopardize crew rest, which can 

subsequently affect the performance of the crew and create an unsafe situation.  

Planned inappropriate operations are also an issue when hazards are not 

addressed or are inadequately addressed by leadership. 

The third category of known unsafe supervision is Failed to Correct a 

Known Problem.  Supervisors may recognize issues with subordinates, material 

conditions of equipment, or training, which may affect the overall safety of the 

ship’s system or crew (Shappell & Wiegmann, 2000).  Even though the 

deficiencies are recognized, they may be ignored.  Failing to correct the behavior 

or degradation in equipment can lead to errors.  Supervisory violations are the 

willful disregard by supervisors of rules and regulations.  These violations are 

considered rare and difficult to identify, but often instigate a chain of events for a 

mishap to follow (Shappell & Wiegmann, 2000). 

4. Level IV Organizational Influences 

Organizational Influences is the fourth level of the HFACS taxonomy.  It is 

further divided into three categories:  Resource Management, Organizational 

Climate, and Organizational Process.  Organizational influences are latent 

conditions involving communication practices; the actions, omissions, or policies 

of upper-level management, which affect supervision; and the conditions or 

actions of the crew, resulting in a mishap (DoD, 2005). 

Shappell and Wiegmann (2000) described Resource Management in the 

HFACS Final Report as a category that encompasses the realm of corporate-

level decision making regarding the allocation and maintenance of organizational 

assets such as human resources (personnel), monetary assets, and 

equipment/facilities.  The notion of this category is that operational resources 

should be managed with safety-minded and cost-effective decisions. 
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The military’s resources are currently being subjected to potential 

sequestration cuts looming in January 2013.  Deputy Secretary of Defense 

Ashton Carter voiced concerns that the military may be left hollow due to 

reduction of forces, ships, and equipment in order to meet the sequestration 

cutting measures of the DoD’s budget (Carter, 2012).  Resource Management 

looks at the high-level decisions made, and the trickle-down effects on 

equipment, crews, and operations that may cause latent human errors to occur. 

Organizational Climate refers to the working atmosphere within the 

organization (Shappell & Wiegmann, 2000).  This can also be defined as the 

organization’s situational consistencies in the treatment of individuals.  This 

refers to how an organization is structured, the policies in place regarding the 

attainment of sailors and officers, and the overall culture of the organization 

(DoD, 2005). 

The final category in Level IV is Organizational Process.  This looks at the 

overall operations (operational tempo, time pressure, schedules), procedures 

(standards and instructions) and oversight (Operational Risk Management [ORM] 

and safety programs), which can affect the safety of the ship and crew.  High 

operational tempos and increased deployment lengths, may stress crews beyond 

their manning capabilities, subsequently causing conditions for latent errors to 

occur.  Organizational processes can result in unrecognized hazards, leading to 

human error (DoD, 2005). 

F. SUMMARY 

 The literature corroborates the need for continued research into maritime 

accidents.  Human error is prevalent in commercial and Navy maritime accidents.  

Lin (1998) conveyed that previous papers expose human error causal factors as 

a significant cause of ship groundings, but few historical accident data records 

have the necessary information required for human factors analysis.  This is 

partly due to the lack of effort to record information from ship groundings.  Lacy 

(1998) found that the HFACS taxonomy supported over 92% of the causal 

factors found in the Naval Safety Center surface mishap reports, but 
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recommended that there should be better HFACS causal factor descriptions to 

support analysis.  In 2002 the HFWG revealed that human error contributes to up 

to 79% of tanker accidents, 89% to 96% of collisions, and 75% of allisions 

(Rothblum et al., 2002).  Their research exposed that human factor issues 

abound in mishaps, and continued research is necessary to determine 

intervention strategies (Rothblum et al., 2002). 

 There are several definitions of human error.  Rasmussen (2003) 

considered errors as the difference between an actual and a desired state. The 

authors in the book Behind Human Error suggest that the term “human error” 

hides too much about the system (Woods et al., 2010).  Other research conveys 

the notion that inappropriate human behavior reduces system effectiveness and 

safety, which may result in an injury (Wickens et al., 2004).  Reason (1990) 

suggests that there are too many definitions of human error, with no universal 

definition and no universal taxonomy to classify the term.  Reason (1990) divided 

errors into two different categories of errors and violations.  He considered 

violations as intentional human acts, which can be further divided into several 

categories such as routine, optimizing, and exceptional.  In the same approach 

as violations, Reason (1990) divided errors into three basic types:  knowledge-

based mistakes; rule-based mistakes; and skill-based slips and lapses.  These 

theories follow Rasmussen’s (1983) levels of performance of knowledge-based, 

rule-based, and skill-based behaviors. 

 Heinrich (1941) developed the Domino theory where accidents are the 

result of a sequence of events.  The five dominos in his theory are lined up 

sequentially and if one is knocked over, a chain of events could follow, unless 

there is a subsequent removal of one of the unsafe acts or events (Heinrich, 

1941).  Reason’s SCM is a theory suggesting that the “holes in the cheese” are 

weaknesses in defensive barriers and if the holes were to line up, an accident 

may result (Reason, 1990).  The holes in the cheese are due to some form of 

active failure or latent condition.  Active failures have the most direct impact in 
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accidents since it is due to the actions of operators.  Latent conditions take time 

to develop and are difficult to identify since it represents hidden unsafe actions. 

 HFACS was originally developed for the aviation community as taxonomy 

to classify human errors.  The backbone of HFACS is Reason’s (1990) concept 

of active and latent failures.  There are four levels of failure:  Unsafe Acts 

(ACTS), Preconditions for Unsafe Acts (PRECONDITIONS), Unsafe Supervision 

(SUPERVISION), and Organizational Influences (ORGANIZATION).  Acts are 

active failures most closely tied to the mishap (DoD, 2005).  Preconditions are 

factors in a mishap if latent and/or active preconditions of individuals exist, 

resulting in human error.  Supervision considers the supervisor’s role in an 

unsafe situation or mishap (DoD, 2005).  Organization is the fourth level of 

HFACS and is considered to be latent conditions involving upper-level 

management that affect supervision, conditions, or the actions of a crew (DoD, 

2005). 
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III. METHOD 

A. RESEARCH APPROACH 

This research entails the post hoc analysis of the U.S. National 

Transportation Safety Board (NTSB), Canada’s Transportation Safety Board 

(TSB), and the United Kingdom’s (U.K.’s) Marine Accident Investigation Bureau 

(MAIB) marine accident database cases.  Each reported accident case in the 

respective databases provides a summary of findings that indicate which factors 

were likely causes for an accident.  The research approach employed the DoD 

HFACS to code human error causal factors for each reported marine accident 

case.  Two raters independently coded each maritime accident case, and after 

coding was completed, inter-rater reliability was evaluated.  Exploratory analysis 

was then conducted to identify significant human error patterns.  Recognized 

patterns were further evaluated in terms of risk, for prioritizing intervention and 

suggesting control measure development. 

B. DATABASE AND ACCIDENT CODING 

1. Maritime Accidents 

The maritime accident report data used was extracted from the U.S. 

NTSB, the Canadian TSB, and the U.K. MAIB maritime accident databases.  The 

following paragraphs characterize each respective governmental safety agency, 

their investigation processes, and respective reporting procedures that generated 

the accident reports used. 

Within the auspices of the U.S. Department of Transportation (DOT), the 

NTSB was developed as an independent administrative agency to promote 

safety among the different modes of transportation (National Transportation 

Safety Board [NTSB], 2012).  Less than a decade later, the NTSB was separated 

from the DOT in order to eliminate any possible conflicts of interest, giving it the 

capability to conduct investigations and provide recommendations to the DOT 

(NTSB, 2012).  The NTSB investigates mishaps involving all modes of 
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transportation including aviation, highway, rail, marine, pipeline, and multimodal 

transportation (NTSB, 2012).  The NTSB cooperates with the U.S. Coast Guard 

(USCG) through a Memorandum of Understanding to conduct investigations 

(NTSB, 2012). 

The NTSB’s investigation team is typically comprised of specialists in 

various disciplines.  The “Go-Team,” is the term used for the investigative team 

on standby to conduct an investigation 24 hours a day, 7 days a week (NTSB, 

2012).  In the event that a significant marine accident occurs, the team is 

dispatched to the scene where it can quickly assess the situation, provide any 

recommendations, and commence the investigation.  An Investigator-in-Charge 

(IIC), who is a senior investigator from the NTSB, takes the lead of all the 

investigators who, in turn, head Individual Working Groups (NTSB, 2012).  These 

groups are formed to divide the responsibilities of the investigation, which are 

based on areas of specialty including operations, structures, power plants, 

systems, weather, human performance, and survival.  Human performance, 

weather, and survival factor specialists respond to all types of accidents (NTSB, 

2012).  Investigation lengths vary depending on the size of the accident, and final 

report delivery depends on the complexity of the analysis.  Once the NTSB 

approves the report, it is added to its database for public viewing (NTSB, 2012). 

The Canadian TSB conducts investigations on accidents related to 

marine, pipeline, rail, and air modes of transportation.  The agency is an 

independent federal organization generated to improve transportation safety.  

TSB’s mandate differs from organizations such as Transport Canada, the 

Canadian Coast Guard (CCG), and the Department of National Defense (DND), 

in that it makes recommendations in order to eliminate or reduce safety 

deficiencies in the various transportation modes (Government of Canada, 2012).  

Unlike the NTSB, which may work with the USCG in investigations, the TSB does 

not work with the CCG to investigate and to determine mishap causal factors. 

The TSB investigation is broken down into three main phases:  the Field 

phase, the Post-Field phase, and the Report Production phase (Government of 
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Canada, 2012).  Once a decision to investigate an accident is made, an IIC is 

appointed and an investigation team consisting of operations, equipment, 

maintenance, engineering, scientific, and human performance specialists is 

assembled.  The Field phase may last as little as a day or as long as several 

months.  The Post-Field phase commences once the TSB departs the accident 

scene and may take several months, during which the team examines all of the 

collected information.  Upon completing the Post-Field phase, the IIC produces a 

draft confidential report that is disseminated to interested parties for comment 

before the final report is prepared for eventual public release. 

The U.K. has a distinct organization that conducts investigations of 

mishaps, the MAIB, which was established under the Merchant Shipping Act of 

1995.  The MAIB conducts investigations on all types of marine accidents within 

U.K. territorial waters and on registered U.K. vessels throughout the world.  Their 

purpose is to investigate accidents to determine the cause and prevent future 

accidents.  The MAIB does not apportion liability or blame; therefore, it does not 

enforce or prosecute under U.K. laws and regulations (MAIB, 2012).  The MAIB 

operates under the umbrella of the Department of Transportation, but is not 

associated with the Maritime and Coastguard Agency (MCA).  The head of the 

MAIB reports to the Secretary of State for Transport.  MAIB’s headquarters is 

located in Southampton and it has four investigation teams that are dispatched to 

worldwide locations.  Each team is assigned a principle inspector and three 

inspectors,  all of who are qualified in various disciplines of the marine industry. 

The framework for MAIB’s investigating and reporting of accidents are set 

forth in regulations by the U.K.’s Merchant Shipping Accident Reporting and 

Investigation provisions of 2005.  Additionally, there is a Memorandum of 

Understanding among the MCA, MAIB, and the Health and Safety Executive 

when determining which organization will take the lead during investigations of 

common interest.  If the MAIB decides to fully investigate an accident, its findings 

are publicly released in a MAIB accident report.  It is not the intent of these 

reports to be used in court proceedings; rather, the MAIB aims to communicate 
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to the public any safety issues and recommendations to prevent the same 

mishaps from occurring in the future (MAIB, 2012). 

All accidents involving commercial vessels designed to carry passengers 

and cargo from the NTSB, TSB, and MAIB databases were screened.  Reported 

navigational accidents where vessels that were underway collided with other 

vessels (collisions), collided with stationary objects (allisions), or ran aground 

were selected for analysis.  The final database contained 48 navigational 

accidents between January 1, 2006 and December 21, 2011. 

2. HFACS 

The Joint Services Safety Chiefs (JSSC) directed that all services (through 

a Memorandum of Agreement between the services) use the DoD HFACS for 

their respective accident investigations (Joint Services Safety Chiefs [JSSC], 

2012).  The HFWG was charged with adapting the DoD HFACS document for 

joint use.  The DoD HFACS is currently in use by the Naval Safety Center to 

investigate Naval aviation and maritime mishaps.  Level I (Acts) is closely tied to 

the accident and is divided into two categories:  errors and violations (DoD, 

2005).  Level II (Preconditions) considers environmental factors, the condition of 

individuals, and personnel factors (DoD, 2005).  Level III (Supervision) considers 

accidents that can be traced back to the supervisory chain of command.  It is 

divided into four subcategories of inadequate supervision, planned inappropriate 

operations, failure to correct known problem, and supervisory violations (DoD, 

2005).  Level IV (Organizational Influences) traces mishap causal factors to the 

fallible decisions of upper-level management, which affect supervisory practices 

as well as the conditions and actions of operators (DoD, 2005).  This is further 

divided into three subcategories of resource/acquisition management, 

organizational climate, and organizational process.  The DoD HFACS taxonomy 

provides subcategories within each category, with “nanocodes” to aid the 

investigator in classifying specific events. 



 41 

3. HFACS Coding 

Two raters independently evaluated the findings of each accident.  The 

raters were selected based on their experience, knowledge, and background of 

the inner workings of surface ships in the U.S. Navy.  Both raters are currently 

Naval officers, qualified as SWOs and studying the HSI curriculum at the NPS in 

Monterey, California.  Collectively, they had approximately 25 years of 

experience and each had gained extensive knowledge of human error and 

HFACS through their studies of the HSI curriculum at NPS.  The raters studied 

the NTSB accident cases and independently coded each case using HFACS.  

Upon completion of their review, the assessors’ results were reviewed and a 

discussion took place to alleviate disagreements.  After completing disagreement 

mediation, the amount of findings without HFACS classification was counted to 

determine the percentage of unclassified findings. 

Each assessor was provided with the DoD HFACS guidance to review. 

Additional HFACS training was given to the raters to ensure that both raters 

understood the classification procedures and to clear up any preconceived 

notions regarding HFACS.  Upon completion of training, each rater was given a 

copy of the NTSB maritime accident reports.  Each rater worked independently to 

determine human error causal factors for each report.  The codes used were in 

accordance with the HFACS instructions. 

The DoD HFACS was adopted for use in this study for data analysis.  In 

implementing the HFACS taxonomy, the two raters used the structure provided in 

the Naval Safety Center DoD HFACS flip book in order to facilitate the 

classification process.  Table 1 illustrates the breakdown of the HFACS 

taxonomy into two levels.  Level I is divided into Acts, Preconditions, Supervision, 

and Organizational Influences.  Level II groups subcategories into each 

respective level. 
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LEVEL I LEVEL II 

CATEGORIES CODE SUBCATEGORIES CODE 

Acts A 

Skill-Based Errors AE1 
Judgment and Decision-Making Errors AE2 
Perception Errors AE3 
Violations AV 

Preconditions P 

Physical & Technological Environment PE 
Coordination/Communication/Planning 
Factors & Self-Imposed Stress PP 

Awareness (Cognitive) Factors, Psycho-
Behavioral Factors, Adverse Physiological 
States, Physical/Mental Limitations, & 
Perceptual Factors 

PC 

Supervision S 

Inadequate Supervision SI 
Failure to Correct Known Problem SF 
Planned Inappropriate Operations SP 
Supervisory Violations SV 

Organization O 
Resource/Acquisition Management OR 
Organizational Climate OC 
Organizational Process OP 

Not Applicable N/A Not Applicable N/A 

Table 1. DoD HFACS Analysis Grouping (After DoD, 2005) 

C. DATA ANALYSIS 

1. DOD HFACS Category Frequency 

The frequency of occurrence for the DoD HFACS categories was 

assessed for each of the findings within the 48 maritime accident cases.  The 

presence of a DoD HFACS nanocode was assessed as a one (1) and the 

absence of a nanocode will be assessed as a zero (0).  No nanocode was used 

more than once in any accident case to avoid oversaturation of the data analysis.  

The codes were used to determine how often the DoD HFACS categories were 

used in each of the accidents.  The total of the category assignments for all 

findings was calculated as a percentage to reflect the frequency of occurrence for 

the HFACS categories.  HFACS categories with the highest frequency of 

occurrence were examined to identify patterns. 
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2. Inter-Rater Reliability 

Cohen’s Kappa analysis was conducted to determine inter-rater 

agreement of HFACS classifications (Curdy, 2009).  From this, determinations 

can be made of where any disagreements between the two raters may be within 

the rating system.  The reasons why there is disagreement and the frequency of 

disagreement between the two raters was examined and utilized as a dataset for 

further analysis.  Cohen’s Kappa was used to determine the proportion of 

agreement versus chance between two raters used for the HFACS coding of the 

maritime accidents.  The Kappa coefficient is regarded as the choice statistical 

measurement for determining agreement between raters (Uebersax, 1987). 

After the raters have classified the marine accidents using HFACS, kappa 

was computed to determine the level of agreement between the raters after 

determining the proportion of chance agreements.  A kappa value of +1 shows 

100% agreement between the two raters.  A kappa value of 0 means there is not 

a relationship between the two raters, while a kappa of –1 is considered to be a 

100% disagreement.  Further interpretation of Cohen’s Kappa values were 

broken down as follows:  between 0.8 and 1 is considered Very Good, between 

0.6 and 0.8 is considered Good, between 0.4 and 0.6 is considered Moderate 

Agreement, between 0.2 and 0.4 is considered Fair Agreement, and between 0 

and 0.2 is considered Slight Agreement (Curdy, 2009). 

3. Human Error Pattern Analysis 

After the raters have conducted the HFACS coding on the NTSB maritime 

accident reports, a pattern analysis was conducted to determine what causal 

factors were identified most often.  These results of the HFACS coding process 

from the raters were useful to categorize causal factors for further analysis in this 

research.  A Chi Squared (χ2) analysis was conducted to the examine the null 

hypothesis (Ho) of homogeneity that collisions, allisions, and groundings are 

equally likely to be categorized as findings of Acts (A), Preconditions (P), 

Supervision (S), Organization (O), or Not Applicable (N/A). Logistic regression 
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analysis was then used to identify any significant patterns present in the coded 

accident data sets.  Frequency tables were developed to represent how often an 

accident type has an HFACS Level I and Level II category associated with it. 

Two rounds of logistic regression analysis were performed to determine if 

any HFACS Level I categories, or Level II subcategories, were significant for 

particular types of accidents.  The first round consisted of testing specific 

accident types (first, collisions against allisions and groundings; then, allisions 

against collisions and groundings; and finally, groundings against collisions and 

allisions) and HFACS Level I categories.  If a category was found to be 

statistically significant, further logistic regression was conducted based on the 

second level of HFACS.  The second round of analysis looked at specific 

accident types, compared with HFACS Level II subcategories. 

4. Risk Analysis 

A risk assessment was conducted based on the percentage of 

agreements noted between the two raters and results of the follow-on analysis.  

This risk assessment was based on patterns and prevalent factors identified in 

the HFACS coding process.  The risk assessment process detected common 

hazards noted in previous analysis and assessed any associated risks to 

vessels.  Likelihood was considered as how often a specific hazard resulted in an 

accident, while severity considered the outcome of an accident if a hazard was 

the identified cause.  For the purposes of this research, suggested accident 

probability and severity levels from the DoD Standard Practice for System Safety 

(DoD MIL-STD-882D, 2000) were used (see Tables 2 and 3). 
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Table 2. Accident Probability Criteria (From DoD MIL-STD-882D, 2000) 
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Table 3. Accident Severity Criteria (From DoD MIL-STD-882D, 2000) 

 After a hazard was classified in terms of its probability and severity, it was 

assigned a Risk Assessment Code (RAC) taken from the Risk Assessment 

Matrix (see Table 4).  These values were assigned to a risk category as either 

being HIGH, SERIOUS, MEDIUM, or LOW (see Table 5). 

 
Table 4. Risk Assessment Matrix (From DoD MIL-STD-882D, 2000) 
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Table 5. Mishap Risk Categories (After DoD MIL-STD-882D, 2000) 

 After significant factors were identified using logistic regression analysis, a 

modified hazards analysis was constructed.  This provided a means to define 

what patterns were prevalent, determine the effects, and assess the risk 

associated with each latent condition.  Patterns were evaluated based on the 

significant factors and associated accident reports.  Risk was assessed in terms 

of probability and severity using the inputs provided by the two raters during the 

HFACS coding.  The modified hazard analysis was conducted to increase 

awareness of potential safety issues and present potential corrective measures. 
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IV. RESULTS 

A. ACCIDENT DATABASE 

 A total of 48 merchant ship accidents from three different countries were 

reviewed during the period of January 2006 through December 2011, and were 

selected for analysis based on them involving a collision, allision, or grounding.  

Of these 48 mishaps, 9 (12.5%) were from the U.S. NTSB database, 6 reports 

(18.8%) were from the Canadian TSB database, and 33 (68.8%) reports were 

from the U.K. MAIB database.  Table 6 presents the distribution of the types of 

accidents pulled from each country’s respective database. 

 
Number of 
Accidents Groundings Collisions Allisions 

Canada TSB 6 3 1 2 
U.S. NTSB 9 1 3 5 
U.K. MAIB 33 13 10 10 
TOTAL 48 17 14 17 

Table 6. Distribution of Maritime Accidents by Type 

 There were 518 total causal factors cited in 48 mishap cases.  Table 7 

presents the number of accident reports per country and the number of causal 

factors (findings) cited, with subsequent averages per accident report.  Canada’s 

TSB had the lowest number of reported accident cases, six, in which 32 causal 

factors were cited.  It also had an overall average of 5.3 causal factors per report.  

This was much less than the U.S. NTSB average of 15.3 causal factors in nine 

reports.  The U.K. MAIB had 33 accidents, with an overall average of 10.8 causal 

factors per report. 
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Country 

Total 
Number of 
Accident 
Reports 

Total 
Number of 

Causal 
Factors  

Mean Causal 
Factors per 

Accident 
Report 

Canada TSB 6 32 5.3 
U.S. NTSB 9 138 15.3 
U.K. MAIB 33 358 10.8 
TOTAL 48 518 10.5 

Table 7. Distribution of Number of Causal Factors by Country 

Each of the three respective countries’ accident reports were categorized 

into one of three types:  Collisions, Allisions, and Groundings.  Table 8 shows 

three different categories for each country, along with the respective minima, 

maxima, and averages of causal factors cited for each accident.  The NTSB 

accident reports had the highest averages of causal factors cited in all three 

categories, while Canada’s TSB had the lowest averages. 

Country Accident 
Type 

Number of 
Accidents 

Number of 
Cited 

Causal 
Factors 

Number of Causal Factors Cited 
per Accident 

Min Max Mean 

Canada TSB 
Collision 1 5 5 5 5.0 
Allisions 2 10 4 6 5.0 

Groundings 3 17 5 7 5.7 

U.S. NTSB 
Collision 3 48 14 19 16.0 
Allisions 5 64 9 30 14.8 

Groundings 1 16 16 16 16.0 

U.K. MAIB 
Collision 10 122 5 28 12.2 
Allisions 10 104 6 22 10.4 

Groundings 13 132 3 24 13.2 
TOTAL 48 518  

Table 8. Distribution of Number of Causal Factors by Accident Type 

B. RATER CAUSAL FACTOR CODING 

 The raters were instructed to only use one HFACS nanocode for each of 

the accident reports’ findings, in order to avoid oversaturation of the data 
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analysis.  The raters’ nanocodes were then split into Level I and Level II codes 

for analysis.  If the raters had findings that did not relate to the HFACS taxonomy, 

then the findings were not classified into the HFACS taxonomy and were 

annotated as Not Applicable (N/A). 

 The frequency of occurrence for the HFACS categories was assessed for 

each of the 48 maritime accident cases.  There were a total of 18 Level I and II 

HFACS category assignments for all findings, which were considered causal 

factors.  The percentage listed in Table 9 reflects the ratio frequency occurrence 

of a particular HFACS category to the total number of accidents (48) in Level I.  

The category with the highest frequency of occurrence in HFACS Level 

One/Rater 1 is the Preconditions category, with a 27% of occurrence.  Rater 2 

classified findings into Organization (28%) as the most common factor. 

HFACS LEVEL I CATEGORY RATER 1 RATER 2 
# % # % 

ACTS 137 26.4 132 25.5 
PRECONDITIONS 139 26.8 97 18.7 
SUPERVISION 40 7.7 55 10.6 
ORGANIZATION 134 25.9 146 28.2 
NOT APPLICABLE 68 13.1 88 17.0 

Table 9. Level I HFACS Distribution 

 Raters then coded the findings into the HFACS Level II subcategories, 

which was more difficult to conduct due to the increased number of possible 

subcategories.  Table 10 reflects the frequency of occurrence for all HFACS 

categories and respective subcategories for Level II.  In Level II, Rater 1 

classified findings into the Coordination/Communication/Planning Factors (PP) 

subcategory (17.4%) in the HFACS Level I Preconditions category most often, 

while Rater 2 used the subcategory OP (27.8%) in the Organization category 

most often. 
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HFACS LEVEL 2 
SUBCATEGORIES 

RATER 1 RATER 2 
# % # % 

ACTS 

AE1 37 7.1 58 11.2 
AE2 71 13.7 61 11.8 
AE3 5 1.0 2 0.4 
AV 24 4.6 11 2.1 

PRECONDITIONS 
PE 11 2.1 4 0.8 
PP 90 17.4 68 13.1 
PC 38 7.3 25 4.8 

SUPERVISION 

SI 18 3.5 27 5.2 
SF 1 0.2 5 1.0 
SP 14 2.7 16 3.1 
SV 7 1.4 7 1.4 

ORGANIZATION 
OR 38 7.3 28 5.4 
OC 10 1.9 11 2.1 
OP 86 16.6 107 20.7 

NOT APPLICABLE N/A 68 13.1 88 17.0 

Table 10. HFACS Level II Distribution by Raters 

C. INTER-RATER RELIABILITY 

After the two raters’ independent coding process was conducted, there 

were initially 226 (43.6%) agreements of the 518 findings for Level I and 234 

(45%) for Level II.  After discussion, mediation, and reconciliation of all 

disagreements, consensus was reached and agreement between raters was 

obtained for 405 (78%) findings in Level I and 357 (69%) in Level II.  This was 

used as the dataset for further analysis.  The remaining unresolved causal 

factors were considered Not Applicable (N/A) within the current HFACS 

taxonomy.  The overall Cohen’s Kappa values for each HFACS levels are given  

in Table 11.  The best agreement between the two raters was in Level I (Cohen’s 

Kappa = 0.72), where the findings were categorized as an Act, Precondition, 

Supervision, Organization, or Not Applicable (N/A).  Level II agreement was 

lower (Cohen’s Kappa = 0.64).  This level represented 13 different categories 
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and a Not Applicable category.  The Cohen’s Kappa Level I finding of 0.72 and 

Level II of 0.64 are both considered good agreement between the two raters. 

HFACS Level Before or After Discussion Cohen’s Kappa Value 

I Before 0.45 
After 0.72 

II Before 0.39 
After 0.64 

Table 11. Cohen’s Kappa Results 

D. HUMAN ERROR PATTERN ANALYSIS 

1. HFACS Level I Analysis 

 Figure 6 shows Rater 1 classified collisions as an HFACS category Acts 

more often than any other category (33.7%).  Groundings classified into the 

Supervision category the least (6.1%).  Null Hypothesis (Ho):  The type of 

accidents (groundings, collisions, and allisions) is equally likely to be categorized 

as findings of Acts (A), Preconditions (P), Supervision (S), Organization (O), or 

Not Applicable (N/A).  Using Rater 1 data in HFACS Level I, the null hypothesis 

of homogeneity of allision, collision, and grounding incidents, with regard to the 

distribution of HFACS categorical findings, is rejected (p = 0.03). 

 
Figure 6. Percentage of Rater 1-Level I Findings by Accident Types 
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 Figure 7 shows that Rater 2 classified groundings (33.3%) and allisions 

(28.1%) most often into the Organization category and collisions (34.3%) into the 

Acts category.  Once again the Null Hypothesis (Ho): The type of accidents 

(collisions, allisions, and groundings) is equally likely to be categorized as 

findings of Acts (A), Preconditions (P), Supervision (S), Organization (O), or Not 

Applicable (N/A). Using Rater 2 data only, the null hypothesis of homogeneity of 

the type of accidents (groundings, collisions, and allisions), with regard to the 

distribution of HFACS categorical findings, is rejected (p = 0.01). 

 
Figure 7. Percentage of Rater 2 Level I Findings by Accident Types 

 Figure 8 shows the percentage of accident report findings where the two 

raters agreed on the HFACS Level I categorization, with regards to the type of 

accident.  Collisions were classified as Acts by both raters most often (36.1%) 

and groundings were classified as Supervision the least (6.1%). 
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Figure 8. Agreement Between Raters by Accident Type in HFACS Level I 

Table 12 shows how many mishaps were coded with at least one finding 

from the categories of HFACS Level I codes for each subsequent accident type.  

The raters used the HFACS Level I category of Organization most often among 

the Collisions (92.9%), Allisions (100%), and Groundings (100%).  The 

Supervision category was used the least for Allisions (41.2%) and Groundings 

(41.2%). 

 
Table 12. Frequency of HFACS Level I Codes for Each Accident Type 

2. HFACS Level II Analysis 

 Figure 9 represents the percentage of findings by Rater 1 classified in the 

HFACS Level II subcategories, with regards to the type of accident.  Four factors 
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were more frequent than the rest of the factors.  The subcategory of Self-

Imposed Stress (PP) represented the highest overall percentage when Rater 1 

classified findings.  Subcategory PP represented the highest usage by Rater 1 

for allisions and groundings.  Organizational Processes (OP) and Judgment and 

Decision Errors (AE2) were the two other factors that were prevalent in the 

figure.  Not Applicable (N/A) was used by Rater 1 when unable to classify 

accident findings.  This occurred for allisions (17.1%) most often when compared 

to collisions (13.1%) and groundings (8.5%). 

 
Figure 9. Percentage of Rater 1 Level II Findings by Accident Types 

 Figure 10 represents Rater 2’s percentage of findings classified in the 

HFACS Level II subcategories, with regards to the type of accident.  Not 

Applicable (N/A) was used by Rater 2 when unable to classify accident findings. 

This occurred for allisions (23.6%) most often when compared to collisions 

(14.3%) and groundings (12.7%).  The subcategory of Organizational Processes 

(OP) had the highest percentage overall, and subsequently was rated the highest 

for collisions (16.0%) and groundings (24.2%).  There were three instances 
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where a subcategory was not used.  The most significant differences noted 

between the raters are the use of subcategories of Skill-Based Errors (AE1), 

Judgment and Decision-Making Errors (AE2), and 

Coordination/Communication/Planning Factors (PP). 

 
Figure 10. Percentage of Rater 2 Level II Findings by Accident Types 

 Figure 11 shows the percentage of accident report findings where the two 

raters agreed on the HFACS Level II categorization, with regards to the type of 

accident.  Collisions classified into subcategory Organizational Processes (OP) 

resulted in the highest percentage of agreement (27.7%).  There were nine 

instances where a subcategory was not used.  Both raters did not classify 

allisions into the HFACS subcategory of Failure to Correct Known Problem (SF).  

Not Applicable (N/A) findings represented the highest agreement percentage for 

findings involving allisions (24.4% compared to all subcategories). 
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Figure 11. Agreement Between Raters by Accident Type in HFACS Level II 

 Table 13 represents how many mishaps were coded with at least one 

finding from the subcategories of HFACS Level II codes for each subsequent 

accident type.  The raters used HFACS Level II subcategories of Perception 

Errors (AE3), Technological Environment (PE), Failure to Correct Known 

Problem (SF), and Supervisory Violations (SV) most often among the Collisions 

(93% each).  For allisions and groundings, the Self-Imposed Stress (PP) was 

used the most often (82% each). 
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Table 13. Frequency of HFACS Level II Codes for Each Accident Type 

3. Logistic Regression Analysis 

 The first round of logistic regression analysis was performed to determine 

if there was a significant difference in the HFACS Level I categories among the 

three types of accidents.  Three areas were examined in the logistic regression 

model analysis output: 

The first area examined was the whole-model test: 

If p < 0.05, then the logistic model is NOT useful. 

If p > 0.05, then the logistic model is useful. 

The second area examined was the lack-of-fit test: 

If p > 0.05, then the logistic model is adequate. 

If p < 0.05, then the logistic is inadequate. 

The final areas examined were the parameter estimates: 

If p < 0.05, then the indicator is statistically significant. 

If p > 0.05, then the indicator is NOT statistically significant. 

(Note: All of the logistic regression tables were extracted from the JMP statistic 

software program output for each respective logistic regression model).   

 In testing collisions versus non-collisions across HFACS Level I categories 

(see Table 14), the logistic regression analysis revealed that the whole model 

test was slightly above being statistically significant (χ2
(4) = 8.21, p = 0.08), but 

the lack-of-fit test revealed that there was no evidence of a lack-of-fit (p = 0.26).  

In testing the significance of the predictors in the logistic model, there was a 

significant difference for the Supervision category (p = 0.02). 
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Table 14. Collisions Compared to All HFACS Level I Categories 

 The Supervision category was then singled out as the only independent 

variable and logistic regression was again conducted (see Table 15).  The  

whole-model test reveals there is evidence to suggest that the model is useful 

(χ2
(1) = 5.01, p = 0.03).  In testing the significance of the Supervision category as 

a predictor in the parameter estimates, the category was determined to be 

statistically significant (p = 0.05). 
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Table 15. Collisions Compared to HFACS Level I Supervision Category 

 Further the logistic regression was performed to determine if there was a 

significant difference between collisions and non-collisions across the four 

HFACS Level II subcategories of Supervision (see Table 16).  The whole-model 

test provided evidence that the model was not useful for Supervision 

subcategories to differentiate collisions from non-collisions (χ2
(4) = 6.85, p = 

0.14).  Since the lack-of-fit test just passed (p = 0.06), the parameter estimates 

were examined.  The parameter estimates revealed there was not a significant 

difference between collisions and noncollisions across the subcategories of 

Supervision. 
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Table 16. Collisions Compared to All HFACS Level II Supervision 

Subcategories 

In testing the next accident type, allisions versus non-allisions across the  

HFACS Level I categories, the logistic regression revealed that the whole-model 

test was not statistically significant (χ2
(4) = 7.25, p = 0.12), but the lack-of-fit test 

reveals that there was no evidence of a lack of fit (p = 0.51).  In testing the 

significance of the predictors in the logistic model, there was a significant 

difference for the Organization category (p = 0.02).  Table 17 displays the logistic 

regression output for allisions versus nonallisions across all HFACS Level I 

categories. 
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Table 17. Allisions Compared to All HFACS Level I Categories 

 The Organization category was then singled out as the only independent 

variable and logistic regression was conducted again (see Table 18).  The whole-

model test reveals there was evidence to suggest the model was useful (χ2
(1) = 

6.74, p = 0.01).  In testing the significance of the Organization category as a 

predictor in the parameter estimates, the category was determined to be 

statistically significant (p = 0.03). 
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Table 18. Allisions Compared to HFACS Level I Organization category 

 Further regression analysis was performed to determine if there was a 

significant difference between allisions versus non-allisions and the three HFACS 

Level II subcategories of Organization (see Table 19).  The whole-model test 

provided evidence that the model was useful for Organization subcategories to 

predict allisions (χ2
(3) = 7.72, p = 0.05).  Since the lack-of-fit test passed (p = 

0.37), the parameter estimates were examined.  The parameter estimates 

revealed that there was one subcategory, Resource/Acquisition Management 

(OR), as statistically significant (p = 0.03) between allisions versus nonallisions. 
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Table 19. Allisions Compared to All HFACS Level II Organization 

Subcategories 

 The Resource/Acquisition Management (OR) subcategory was then 

singled out as the only independent variable and logistic regression was 

conducted again (see Table 20).  The whole-model test reveals there was 

evidence to suggest the model was useful (χ2
(1) = 4.73, p = 0.03).  In testing the 

significance of the Resource/Acquisition (OR) subcategory as a predictor in the 

parameter estimates, the subcategory was determined to be statistically 

significant (p = 0.03). 
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Table 20. Allisions Compared to HFACS Level II Resource/Acquisition 

Management Subcategory 

In testing the third accident type, groundings versus nongroundings across 

HFACS Level I categories, the analysis revealed that the whole-model test was 

statistically significant (χ2
(4) = 9.82, p = 0.04).  The lack-of-fit test revealed that 

there was no evidence of a lack of fit (p = 0.20).  In testing the significance of the 

predictors in the logistic model, there was a significant difference for the 

Supervision category (p = 0.05).  Table 21 displays the logistic regression output 

for groundings versus nongroundings across all HFACS Level I categories. 
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Table 21. Groundings Compared to All HFACS Level I Categories 

 The Supervision (S) category was then singled out as the only 

independent variable and regression analysis was conducted again (see Table 

22).  The whole-model test revealed there was evidence to suggest that the 

model was useful (χ2
(1) = 5.07, p = 0.02).  In testing the significance of the 

Supervision (S) category as a predictor in the parameter estimates, the category 

was determined to be statistically significant (p = 0.03). 
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Table 22. Groundings Compared to HFACS Level I Supervision Category 

 Further logistic regression was performed to determine if there was a 

significant difference between groundings and the three HFACS Level II 

subcategories of Supervision (see Table 23).  The whole-model test provided 

evidence that the model was not useful for Supervision subcategories to predict 

groundings (χ2
(4) = 4.87, p = 0.31).  Additionally, the lack-of-fit test did not pass (p 

= 0.03); therefore, the model was considered inadequate.  Since the Inadequate 

Supervision (SI) subcategory was slightly above significance, it was singled out 

for further logistic regression analysis. 
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Table 23. Groundings Compared to All HFACS Level II Supervision 

Subcategories 

 The Inadequate Supervision (SI) subcategory was singled out as the only 

independent variable and regression analysis was conducted again (see Table 

24).  The whole-model test revealed that there was evidence to suggest the 

model was useful (χ2
(1) = 4.73, p = 0.03).  In testing the significance of the 

Inadequate Supervision (SI) category as a predictor in the parameter estimates, 

the category was determined to be statistically significant (p = 0.03). 
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Table 24. Groundings Compared to HFACS Level II Inadequate Supervision 

Subcategory 

 The second round of logistic regression was performed to determine if 

there was a significant difference in the HFACS Level II subcategories among the 

three types of accidents.  In testing collisions against HFACS Level II 

subcategories, the analysis revealed that the whole-model test was useful (p = 

0.0001), but the lack-of-fit test revealed that there was no evidence of a lack of fit 

(p = 1.00).  This proved the model was unstable, and therefore disregarded (see 

Appendix). 

 In testing allisions against HFACS Level II subcategories, the analysis 

revealed that the whole-model test was useful (χ2
(14) = 26.02, p = 0.03).  The 

lack-of-fit test revealed that there was no evidence of a lack of fit (p = 0.48).  In 

testing the significance of the predictors in the logistic model, there was a 

significant difference for the Violations (AV) subcategory (p = 0.02).  

Organizational Processes (OP) was slightly above significance (p = 0.06); 

therefore, it was considered for further analysis.  Table 25 displays the logistic 

regression output for Allisions compared to all HFACS Level II subcategories. 
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Table 25. Allisions Compared to All HFACS LEVEL II Subcategories 
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 The Violations (AV) and Organizational Processes (OP) subcategories 

were singled out as the only independent variables and logistic regression was 

conducted again (see Table 26).  The whole-model test revealed that there was 

evidence to suggest the model was useful (χ2
(2) = 11.53, p = 0.003).  The lack-of-

fit test revealed that the model was adequate (p = 0.07).  In testing the 

significance of the Violations (AV) subcategory as a predictor in the parameter 

estimates, the subcategory was determined to be statistically significant (p = 

0.01).  The subcategory of Organizational Processes (OP) was not considered 

statistically significant. 

 
Table 26. Allisions Compared to HFACS Level II Subcategories of Violations 

(AV) and Organizational Processes (OP) 

 In testing the third accident type, groundings versus non-groundings 

across the HFACS Level II subcategories (see Table 27), the analysis revealed 
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that the whole-model test was not useful (χ2
(14) = 20.35, p = 0.12).  The lack-of-fit 

test revealed that there was no evidence of a lack of fit (p = 0.22).  In testing the 

significance of the predictors in the logistic model, there was a significant 

difference for the subcategories of Skill-Based Errors (AE1) (p = 0.02), Judgment 

and Decision-Making Errors (AE2) (p = .01), Inadequate Supervision (SI) (p = 

0.04), and Organizational Climate (OC) (p = 0.03). 

 
Table 27. Groundings Compared to All HFACS Level II Subcategories. 
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 The subcategories of Skill-Based Errors (AE1), Judgment and Decision-

Making Errors (AE2), Inadequate Supervision (SI), and Organizational Climate 

(OC) were singled out as the only independent variables and regression analysis 

was conducted again (see Table 28).  The whole-model test revealed that there 

was evidence to suggest the model was useful (χ2
(4) = 14.8, p = 0.01).  The lack-

of-fit test revealed that the model was adequate (p = 0.78).  In testing the 

significance of each subcategory as a predictor in the parameter estimates, the 

subcategories of Inadequate Supervision (AE2), Inadequate Supervision (SI), 

and Organizational Climate (OC) were determined to be statistically significant.  

The subcategory of Skill-Based Errors (AE1) was not considered statistically 

significant (p = 0.06). 

 
Table 28. Groundings Compared to HFACS Level II Subcategories of  
Skill-Based Errors (AE1), Judgment and Decision-Making Errors (AE2), 

Inadequate Supervision (SI), and Organizational Climate (OC). 
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E. MODIFIED HAZARD ANALYSIS 

 Based on the factors that were identified significant in the logistic 

regression analysis, a modified hazard analysis process was conducted.  This 

presented prevalent patterns.  The modified hazard analysis entailed defining 

which factors were assessed as significant or prevalent, describing what the 

effect was for each latent condition, and examining common patterns between 

them based on evaluating the narratives of the accident reports.  Each individual 

pattern was identified and assessed in terms of risk and composition of severity 

and probability.  Potential intervention strategies currently used in the U.S. Navy 

were provided as possible mitigations.  Table 29 presents the modified hazard 

analysis. 
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Table 29. Modified Hazard Analysis of Identified Patterns 
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The following is a characterization of the patterns identified for each type 

of accident.  From the data analysis, it was determined that the HFACS Level I 

category of Supervision was statistically significant when vessels collided.  

Further logistic regression using the Supervision category verified this result.  

Additional regression analysis of the HFACS Level II subcategories of 

Supervision proved unstable, likely due to the extensive number of variables.  

The data analysis did reveal one general pattern within the collision accidents.  A 

more in-depth examination of the collision accident reports revealed latent 

conditions regarding supervisory factors appeared to be followed by unsafe acts.  

The main effect from this latent condition was that the potential for improperly 

trained or inexperienced crews tends to result in a lack of procedural compliance.  

This was assessed as a risk category of four, where the likelihood was 

considered an occasional occurrence and the severity was catastrophic.  Further 

analysis with a larger sample will likely stabilize the dataset. 

 Allisions had more significant factors, which provided a sharper 

representation of identifiable patterns.  Three patterns were outlined in the 

modified hazard analysis.  The first pattern observed involved the latent condition 

of Resource Management, which represented 6 of the 15 accidents.  The pattern 

identified that two unsafe acts could result if the defensive barriers failed.  The 

first unsafe act involved ships’ crews utilizing known or unknown faulty 

equipment.  The effect of the latent condition was determined to be human 

factors issues onboard the ship, creating an excessive workload for bridge 

teams.  This was assessed as a risk category of two, where the likelihood was 

probable and the severity was catastrophic.  The second unsafe act within this 

pattern was the failure to assess risk while maneuvering in or out of a port.  Two 

effects considered were that risk control measures were not in place and that 

there was an inadequate process to identify known and unknown issues.  The 

lack of control measures was assessed as probable for the likelihood of 

occurrence and the severity as catastrophic.  The other latent condition was that 
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inadequate processes were in place to identify known or unknown issues.  This 

was assessed as an occasional occurrence with catastrophic consequences. 

 The second pattern identified in allisions involved Inadequate Supervisory 

conditions.  This represented seven of the allision accidents.  The active failures 

that may result from this latent condition were poor bridge team communications, 

inhibiting ship movement; lack of supervision, resulting in procedures not 

followed (Violations); and supervision failing to assess risk, resulting in unsafe 

situations.  The effects from this latent condition ultimately involved the lack of 

Bridge Resource Management, along with poor supervision and communication.  

Three of the active failures were assessed as occasional occurrences with 

catastrophic consequences.  The fourth active failure was also assessed as 

catastrophic, but probable, in occurrence. 

 The third allision pattern identified was the embedded latent condition of 

Organizational Processes, which represented 10 of the allision accidents.  The 

effects of this latent condition were the lack of organizational procedures for the 

operator and no established organizational risk control measures in place.  The 

two effects of the latent condition could result in an unsafe condition and were 

both assessed as an occasional occurrence, with the severity considered as 

catastrophic. 

 There were two patterns identified from grounding accident reports.  From 

the logistic regression analysis conducted, two HFACS Level I categories were 

significant.  Both Skill-Based Errors and Judgment and Decision-Making Errors 

had latent conditions prevalent in follow-on accident report reviews.  Skill-Based 

Errors represented 9 of the accidents and Judgment and Decision-Making Errors 

represented all 14 groundings.  For Skill-Based Errors, two HFACS Level II 

subcategories of Inadequate Supervision and Organizational Climate appeared 

to be latent conditions.  Data analysis indicated Inadequate Supervision was 

significant, but the HFACS Level I category of Organization was near borderline 

significant (p = 0.07).  The effects from both unsafe acts, with regards to the 

respective failed latent conditions, were the lack of procedural compliance; 



 79 

insufficient testing procedures; improper organizational risk assessment; 

improper supervision; and improper internal auditing of management, 

procedures, and crew knowledge.  Overall, both patterns were assessed as 

catastrophic severities.  Improper organizational risk assessment and improper 

supervision were considered occasionally occurring.  The remaining three latent 

conditions were considered probable to occur in time. 

The patterns indicated in the modified hazard analysis were all initially 

assessed for risk, with regards to severity and probability.  Mitigating actions and 

interventions currently used by the Navy were recommended for all patterns with 

associated latent conditions.  When corrective measures were applied, likelihood 

values were decreased by one level, thereby reducing the overall Risk 

Assessment Value.  Prior to corrective measures, all patterns were assessed as 

“High” in the Mishap Risk Category.  When some latent conditions were removed 

through mitigation, the risk lessened to “Serious.” 

F. SUMMARY 

For this analysis, there were 48 commercial vessel accident cases 

appropriated from three countries’ accident databases.  Cases were coded by 

two independent raters using the HFACS taxonomy, which was divided into two 

levels for ease of analysis.  After discussion and reconciliation,  a consensus was 

reached and the subsequent agreements were used for data analysis.  Cohen’s 

Kappa was used to measure inter-rater reliability for the HFACS Levels between 

the two raters before and after reconciliation.  Logistic regression was used for 

analysis to determine if patterns were prevalent and if the patterns could be 

correlated to specific accident types.  Statistically significant factors were then 

placed in a matrix.  This aided in the identification of prevalent patterns and was 

used to construct a modified hazard analysis.  The modified hazard analysis 

refined specific HFACS patterns associated with the three accident types.  The 

patterns found in each accident type were outlined according to the connected 

latent conditions, active failures, and overall effects.  A risk assessment value 

was specified, along with mitigating actions to reduce overall risk. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. DISCUSSION 

 It is recognized that with the reduction of manpower on U.S. Navy ships, 

there will be a dependency on automated technology to close the gap.  In order 

to gain insight into the challenges this may pose, an analysis was done on 

civilian merchant ship accidents involving ships utilizing minimal crew.  

Databases from three countries were consulted and analyzed.  Those cases 

were then reviewed and coded using HFACS, an adaptation of Reason’s SCM of 

human error. 

 The codes assigned by the raters were verified through a reliability 

analysis and it was determined that there was adequate agreement to proceed.  

The initial analysis involved table-displayed data, which subsequently led to a 

series of logistical analyses.  The first round of analysis identified prevalent 

HFACS categories indicative of the three types of accidents (collisions, allisions, 

and groundings).  This was followed up by subsequent analysis, which focused 

on specific HFACS Level I categories found to be statistically significant.  Further 

logistic analysis was conducted using known significant categories to identify 

significant HFACS Level II subcategories.  The second round was a full logistic 

regression analysis conducted on all HFACS Level II subcategories.  This 

attempt did hold some potential, but it was determined that the small sample size 

and large number of predictors made the analysis too unstable to pursue in this 

research. 

B. RESEARCH QUESTIONS 

 This research set out to determine if patterns could be identified from the 

causal factors described in domestic and international commercial maritime 

accident reports.  The research utilized the HFACS taxonomy to systematically 

investigate these reports in order to answer the following questions: 
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1. Research Question #1 

The use of HFACS provided a taxonomy to organize latent conditions and 

active failures identified by post hoc data analysis.  This enabled frequency 

counts to be developed from the raters’ results.  The frequency counts enabled 

the ability to discern generalized patterns for each rater.  The results of each 

rater were then compared and used to identify specific latent conditions or active 

failures as problematic, by associating the frequently used HFACS codes.  The 

use of chi square analysis for independence revealed that the accident types are 

not equally likely to be classified as specific HFACS categories.  This indicated 

that the frequencies of the HFACS codes used by the raters were essential to 

identifying the high-use categories associated with specific accident types. 

 The process of applying the HFACS taxonomy was particularly useful to 

discern patterns and prevalent error types.  Prevalent latent conditions were 

recognized due to the frequency of use when the raters coded the accident 

findings.  This essentially set the stage for a more profound analysis of the data 

using logistic regression techniques.  For this research, the data was structured 

to find further patterns concerning accident types.  The HFACS taxonomy, 

however, facilitates the examination of other types of analysis, such as 

discerning if patterns are prevalent among systems or environmental factors. 

2. Research Question #2 

There were a total of six patterns found among the three different types of 

accidents.  Collisions were the only accident type that did not have any 

significant HFACS Level II categories.  There was one HFACS Level I code, 

Supervision, which was considered statistically significant, and its presence was 

enough to derive a pattern.  The accident type, allisions, had three prevalent 

patterns identified based on the HFACS Level II subcategories.  The three 

patterns found in allisions were identified by the latent conditions within the 

HFACS Level I categories of Supervision and Organization.  Groundings also 

had latent conditions and active failures identified within the HFACS Level I 
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categories of Organization, Supervision, and Acts.  The similarity between the 

three accident types was that the latent condition of Supervision was significant 

throughout all accident patterns.  Groundings were the only accident type 

identified to have active failures as the prevalent human error type identified by 

the raters from the accident reports.  This is significantly different from collisions 

and allisions, where latent conditions were the only factors identified. 

 The difference found in the accident patterns from collisions, allisions, and 

groundings were considered subtle, but noteworthy.  This research revealed that 

it may be probable that active failures may be inherent in ship-grounding 

accidents, and that latent conditions are more likely to be present in collisions 

and allisions.  Further analysis with a larger sample size of accident reports is 

needed to confirm any validity of this notion.  From the data analysis conducted 

in this research, however, it is reasonable to consider that differences in the 

patterns can be identified among the three different accident and human error 

types.  This is vital for the human factors studies of maritime accident reports, in 

order to develop intervention strategies and prevent future maritime accidents 

from occurring. 

3. Research Question #3 

The six patterns identified from the three accident types each had a chain 

of events that included latent conditions.  When particular HFACS categories 

were identified as significant, a review of the accident reports with significant 

findings was conducted.  This was necessary in order to identify how the causal 

factors aligned in the chain of events leading to the accident.  Once this was 

established, a modified hazard analysis table was developed to better 

comprehend the patterns and associated hazards.  Risk was then associated 

with the hazards, along with preventative measures. 

 The strategy of developing a modified hazard analysis table is particularly 

useful in post hoc accident report analyses.  This process can be used for 

developing intervention strategies of latent conditions, thereby reducing the 

amount of failed defensive barriers and, subsequently, the amount of accidents.  



 84 

Further analysis with a larger data set would likely reveal more significant 

patterns, where hazards could be identified and relative risks could be 

associated.  Whether for civilian maritime use or for the Navy fleet, this method is 

relatively simple to employ and should be considered as a low-cost method of 

developing intervention strategies. 

4. Research Question #4 

During the coding process, the raters were instructed to apply one HFACS 

code for every finding.  If they could not fit an appropriate code with a particular 

finding into the HFACS taxonomy, they were to annotate that finding as Not 

Applicable.  The results of the HFACS coding process revealed that out of 518 

findings, Rater 1 coded findings from the accident reports as Not Applicable 68 

times (13%) and Rater 2 88 times (17%).  In general, the HFACS taxonomy 

supported the classification of 450 out of the 518 findings for Rater 1 (87%) and 

430 out of the 518 findings for Rater 2 (83%).  The reliability of HFACS was 

further examined by the inter-rater reliability between the two raters.  The 

agreement between the two raters was determined to be good. 

 Two reasons were cited by the raters regarding the inability to code this 

many factors.  The first reason was that some findings were mechanically related 

in nature and the raters could not fit the HFACS codes to properly relate to these 

types of findings.  The second reason was that some findings were very specific 

to the maritime industry and a “best-fit” answer could not be found within the 

HFACS codes.  Instead of attempting to indirectly fit a code to a finding, the most 

appropriate option was to leave the finding as unclassified.  Prior to the raters’ 

conducting their independent coding process, the HFACS taxonomy was 

reviewed by the raters for applicability.  After discussion, consensus was reached 

and, subsequently, three codes had the words “aircraft/vehicle” replaced with the 

word “vessel.”  Six codes were completely disregarded since it was intended 

solely for the aviation community (e.g., inadequate anti-G straining maneuver).  

This did not have an effect on the analysis since the HFACS taxonomy was 

divided into two levels, primarily to alleviate any difficulties with the analysis 
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process.  If the HFACS taxonomy were further divided into three levels, there 

would have been codes intentionally left out of the analysis, but this would likely 

have had a minimal effect on the results.  Since the HFACS taxonomy was 

initially developed for the aviation community for accident report analysis, it is 

recommended that an HFACS taxonomy be developed that is tailored specifically 

to the maritime community.  This was evident due to the amount of findings left 

unclassified by the raters. 

C. CONCLUSIONS 

 The notion of conducting research on maritime accident reports using the 

HFACS taxonomy was important, since very little human factors research has 

been applied in a post hoc data analysis.  The dataset obtained from the three 

different countries provided enough information to reveal six significant patterns 

in the three accident types.  Further analysis should utilize a larger dataset to 

stabilize the HFACS Level II data, in order to fit a logistic regression model and 

reveal more patterns. 

 Previous research by Lacy (1998), conducted at NPS, has shown that the 

reliability of HFACS is good and can be applied to the maritime accident reports 

in a human factors analysis.  In order to improve the reliability of HFACS, the 

taxonomy needs to be relevant to the maritime community.  Maritime accident 

reports are typically written in a generalized manner and not specific to the 

HFACS taxonomy.  This can create issues for the raters when attempting to fit 

one HFACS code for each accident finding.  The governing bodies for 

transportation from the three countries should adjust their accident reports to 

consider HFACS analysis, or other forms of human factors analysis, to better 

determine what latent conditions exists and how to create intervention strategies. 

 Finally, the Navy should consider using HFACS for additional human 

factors research on the various classes of ships including the new minimally 

manned ships entering the Fleet today (e.g., LCS).  The OMP project, which 

ended recently, should have human factors analysis conducted from the last 10 

years to determine if any prevalent patterns developed in the U.S. Navy’s surface 
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mishaps or near mishaps.  The suggested human factors research should not be 

limited to collisions, allisions, and groundings, but instead should be broadened 

to include categories where latent conditions may develop into active failures 

(e.g., personnel injuries).  By using the data analysis conducted in this research 

and developing a modified hazard analysis, the Navy may be able to develop 

effective intervention strategies, apply it to the Fleet, and reduce the exorbitant 

costs of mishaps. 
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APPENDIX. COLLISIONS COMPARED TO ALL HFACS 
LEVEL II SUBCATEGORIES 

 

Nominal Logistic Fit for Collision 
Converged in Gradient, 21 iterations 

Whole Model Test 
Model -Loglikelihood DF 
Difference 28.97 458 7 14 
Full 1.50151 e-6 
Reduced 28.974588 
RSquare (U) 1.0000 
AICc 45 
BIC 58.068 
Observations (or Sum Wgts) 48 

Chi Square 
57.94917 

Lack Of Fit 
Source 
Lack Of Fit 
Saturated 
Fitted 

DF 
31 
45 
14 

-Loglikelihood ChiSquare 
1.50151e-6 0.000003 
0 Prob>ChiSq 
1.50151e-6 1.0000 

Parameter Estimates 
Term Estimate Std Error Chi Square 
lnte rcept Unstable 649.315579 35141.112 
AE1[0] Unstable 48.2517752 4506.4534 
AE2[0] Unstable -379.79949 20559.238 
AE3[0] Unstable -317.71124 20563.077 
A\1[0] Unstable 316.295598 16813.297 
PE[O] Unstable 32.619978 6317.7215 
PP[O] -0.1870719 2251.7678 
PC[ OJ Unstable 158.449846 8836.7307 
SI[O] Unstable 111.082369 6561.9721 
SF[O] Unstable -30.216709 12406.041 
SP[O] Unstable 31.4100373 2413.6581 
S\1[0] Unstable -237.63858 13807.937 
OR[O] Unstable 110.562144 6852.2344 
OC[O] Unstable -205.66662 11098.17 
OP[O] Unstable 270.488685 15350.37 
For log odds of 0/1 

Effect Likelihood Ratio Tests 
Source Nparm DF L-R ChiSquare Prob>ChiSq 
AE1 1 1 8.31893961 0.0039 
AE2 1 1 30.9235747 <.0001 
AE3 1 1 172.634427 <.0001 
AV 1 1 31.49627 <.0001 
PE 1 1 2.92198e-7 0.9996 
pp 1 1 6.78696e-9 0.9999 
PC 1 1 17.6689514 <.0001 
Sl 1 1 16.2787787 <.0001 
SF 1 1 1.93294e-6 0.9989 
SP 1 1 6.49071682 0.0108 
sv 1 1 21.6657626 <.0001 
OR 1 1 15.5381958 <.0001 
oc 1 1 22.3302316 <.0001 
OP 1 1 43.0426371 <.0001 

Prob>ChiSq 
<.0001 

Prob> ChiSq 
0.00 0.9853 
0.00 0.9915 
0.00 0.9853 
0.00 0.9877 
0.00 0.9850 
0.00 0.9959 
0.00 0.9999 
0.00 0.9857 
0.00 0.9865 
0.00 0.9981 
0.00 0.9896 
0.00 0.9863 
0.00 0.9871 
0.00 0.9852 
0.00 0.9859 
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